Edit model card

wav2vec2-base

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.0808
  • Wer: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.7118 0.5 500 3.0635 1.0
2.9533 1.01 1000 3.0383 1.0
2.9493 1.51 1500 3.0638 1.0
2.9495 2.01 2000 3.0554 1.0
2.9468 2.51 2500 3.0630 1.0
2.9493 3.02 3000 3.0530 1.0
2.9457 3.52 3500 3.0534 1.0
2.9492 4.02 4000 3.0357 1.0
2.9444 4.52 4500 3.0366 1.0
2.9495 5.03 5000 3.0412 1.0
2.9468 5.53 5500 3.0331 1.0
2.9453 6.03 6000 3.0847 1.0
2.9484 6.53 6500 3.0661 1.0
2.9457 7.04 7000 3.0769 1.0
2.9449 7.54 7500 3.0701 1.0
2.9453 8.04 8000 3.1072 1.0
2.9436 8.54 8500 3.1043 1.0
2.9474 9.05 9000 3.0902 1.0
2.9452 9.55 9500 3.0879 1.0
2.9443 10.05 10000 3.1112 1.0
2.9436 10.55 10500 3.0946 1.0
2.9469 11.06 11000 3.0812 1.0
2.9434 11.56 11500 3.1112 1.0
2.9442 12.06 12000 3.0855 1.0
2.9436 12.56 12500 3.0786 1.0
2.9425 13.07 13000 3.0789 1.0
2.9418 13.57 13500 3.0786 1.0
2.9443 14.07 14000 3.0798 1.0
2.9449 14.57 14500 3.0808 1.0

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.10.2
  • Datasets 1.18.3
  • Tokenizers 0.10.3
Downloads last month
18
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.