File size: 1,587 Bytes
5013a37 98404e5 5013a37 98404e5 5013a37 98404e5 5013a37 0700bb3 5013a37 64b4b99 5013a37 98404e5 5013a37 98404e5 ff88ee2 98404e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
---
language:
- en
library_name: transformers
license: other
license_name: microsoft-terms-of-use
license_link: https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/LICENSE
tags:
- text-generation-inference
- phi3
- awq
- microsoft
extra_gated_heading: Access Microsoft on Hugging Face
extra_gated_prompt: >-
To access Phi-3 on Hugging Face, you’re required to review and agree to
Microsoft usage license. To do this, please ensure you’re logged-in to Hugging
Face and click below. Requests are processed immediately.
extra_gated_button_content: Acknowledge license
---
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1kFznlPlWYOrcgd7Q1NI2tYMLH_vTRuys?usp=sharing)
# phi-3-mini-4k-instruct-awq-4bit
phi-3-mini-4k-instruct-awq-4bit is a version of the [Microsoft](https://huggingface.co/microsoft) [Phi 3 mini 4k Instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) model that was quantized using the AWQ method developed by [Lin et al. (2023)](https://arxiv.org/abs/2306.00978).
Please refer to the [Original Phi 3 mini model card](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) for details about the model preparation and training processes.
## Dependencies
- [`autoawq==0.2.5`](https://pypi.org/project/autoawq/0.2.5/) – [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) was used to quantize the phi-3 model.
- [`vllm==0.4.2`](https://pypi.org/project/vllm/0.4.2/) – [vLLM](https://github.com/vllm-project/vllm) was used to host models for benchmarking. |