distilbert-base-uncased_fold_12_binary_v1

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7046
  • F1: 0.8165

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 290 0.4165 0.7983
0.4052 2.0 580 0.4005 0.8213
0.4052 3.0 870 0.6003 0.8078
0.1906 4.0 1160 0.8181 0.7945
0.1906 5.0 1450 0.7775 0.7955
0.0853 6.0 1740 1.0667 0.7912
0.0407 7.0 2030 1.2061 0.7907
0.0407 8.0 2320 1.2522 0.8011
0.0145 9.0 2610 1.3073 0.8110
0.0145 10.0 2900 1.4895 0.7994
0.015 11.0 3190 1.4568 0.8082
0.015 12.0 3480 1.4883 0.8058
0.005 13.0 3770 1.4334 0.8217
0.0026 14.0 4060 1.5032 0.8255
0.0026 15.0 4350 1.5694 0.8193
0.0062 16.0 4640 1.6058 0.8105
0.0062 17.0 4930 1.7390 0.8058
0.0051 18.0 5220 1.6942 0.8100
0.0012 19.0 5510 1.6891 0.8151
0.0012 20.0 5800 1.6961 0.8132
0.0007 21.0 6090 1.6793 0.8168
0.0007 22.0 6380 1.7542 0.8077
0.0027 23.0 6670 1.6869 0.8203
0.0027 24.0 6960 1.7006 0.8194
0.0028 25.0 7250 1.7046 0.8165

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.