Edit model card

mBART-TextSimp-LT-BatchSize8-lr5e-5

This model is a fine-tuned version of facebook/mbart-large-50 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4296
  • Rouge1: 0.0605
  • Rouge2: 0.0078
  • Rougel: 0.0593
  • Sacrebleu: 0.044
  • Gen Len: 34.5776

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Sacrebleu Gen Len
8.0008 1.0 104 7.0565 0.1958 0.1282 0.1868 7.9463 511.6945
0.3454 2.0 209 0.1874 0.6646 0.4862 0.6559 41.0808 34.5752
0.0728 3.0 313 0.0748 0.7063 0.5426 0.6984 48.033 34.5752
0.0491 4.0 418 0.0630 0.7346 0.5861 0.7248 51.6574 34.5752
0.755 5.0 522 0.7158 0.0008 0.0 0.0009 0.0 35.5752
0.4913 6.0 627 0.4653 0.0218 0.0008 0.0219 0.022 34.6134
0.4771 7.0 731 0.4525 0.0385 0.0034 0.0382 0.0308 34.926
0.4224 7.96 832 0.4296 0.0605 0.0078 0.0593 0.044 34.5776

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for eglkan1/mBART-TextSimp-LT-BatchSize8-lr5e-5

Finetuned
(128)
this model