Edit model card


This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. It was trained on stsb.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"]

model = SentenceTransformer('efederici/sentence-bert-base')
embeddings = model.encode(sentences)

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch

#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)

# Sentences we want sentence embeddings for
sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"]

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('efederici/sentence-bert-base')
model = AutoModel.from_pretrained('efederici/sentence-bert-base')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")

Full Model Architecture

  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})


If you want to cite this model you can use this:

@misc {edoardo_federici_2022,
    author       = { {Edoardo Federici} },
    title        = { sentence-bert-base, sentence-transformer for Italian },
    year         = 2022,
    url          = { https://huggingface.co/efederici/sentence-bert-base },
    doi          = { 10.57967/hf/0112 },
    publisher    = { Hugging Face }
Downloads last month
Hosted inference API
Sentence Similarity
This model can be loaded on the Inference API on-demand.

Dataset used to train efederici/sentence-bert-base