edyfjm07/distilbert-base-uncased-TIC2-finetuned-squad-es
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0266
- Train End Logits Accuracy: 0.9905
- Train Start Logits Accuracy: 0.9905
- Validation Loss: 0.9270
- Validation End Logits Accuracy: 0.8777
- Validation Start Logits Accuracy: 0.8276
- Epoch: 50
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 6069, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
---|---|---|---|---|---|---|
2.9957 | 0.3246 | 0.2973 | 1.6002 | 0.5078 | 0.5987 | 0 |
1.3461 | 0.5819 | 0.6387 | 0.9536 | 0.6991 | 0.6928 | 1 |
0.8784 | 0.7059 | 0.7374 | 0.8048 | 0.7492 | 0.7273 | 2 |
0.7023 | 0.7521 | 0.7679 | 0.7546 | 0.7555 | 0.7367 | 3 |
0.5582 | 0.7962 | 0.8067 | 0.7055 | 0.7680 | 0.7962 | 4 |
0.4846 | 0.8057 | 0.8456 | 0.6709 | 0.7774 | 0.7994 | 5 |
0.3972 | 0.8246 | 0.8739 | 0.7190 | 0.8088 | 0.8150 | 6 |
0.3642 | 0.8456 | 0.8813 | 0.6769 | 0.8401 | 0.8150 | 7 |
0.2893 | 0.8561 | 0.9044 | 0.6974 | 0.8119 | 0.7994 | 8 |
0.2928 | 0.8708 | 0.9097 | 0.6651 | 0.8464 | 0.8245 | 9 |
0.2499 | 0.8960 | 0.9160 | 0.7726 | 0.8307 | 0.8056 | 10 |
0.2193 | 0.9149 | 0.9286 | 0.7103 | 0.8339 | 0.8182 | 11 |
0.1987 | 0.9212 | 0.9328 | 0.6805 | 0.8182 | 0.8245 | 12 |
0.1918 | 0.9212 | 0.9359 | 0.7566 | 0.8339 | 0.7931 | 13 |
0.1657 | 0.9286 | 0.9454 | 0.7386 | 0.8433 | 0.8056 | 14 |
0.1440 | 0.9422 | 0.9485 | 0.6785 | 0.8589 | 0.8119 | 15 |
0.1543 | 0.9328 | 0.9527 | 0.7059 | 0.8652 | 0.7962 | 16 |
0.1270 | 0.9527 | 0.9538 | 0.8083 | 0.8527 | 0.8025 | 17 |
0.1107 | 0.9580 | 0.9548 | 0.7088 | 0.8683 | 0.8307 | 18 |
0.1173 | 0.9527 | 0.9622 | 0.7848 | 0.8527 | 0.7931 | 19 |
0.0964 | 0.9643 | 0.9664 | 0.8175 | 0.8621 | 0.8119 | 20 |
0.0986 | 0.9674 | 0.9643 | 0.8027 | 0.8621 | 0.8088 | 21 |
0.0976 | 0.9590 | 0.9601 | 0.8114 | 0.8621 | 0.8213 | 22 |
0.0784 | 0.9664 | 0.9748 | 0.8268 | 0.8652 | 0.8182 | 23 |
0.0707 | 0.9706 | 0.9716 | 0.8681 | 0.8527 | 0.8025 | 24 |
0.0735 | 0.9685 | 0.9727 | 0.8315 | 0.8652 | 0.8119 | 25 |
0.0679 | 0.9727 | 0.9716 | 0.8746 | 0.8495 | 0.8056 | 26 |
0.0556 | 0.9727 | 0.9737 | 0.8374 | 0.8527 | 0.8119 | 27 |
0.0601 | 0.9716 | 0.9800 | 0.8785 | 0.8527 | 0.7900 | 28 |
0.0787 | 0.9674 | 0.9632 | 0.8050 | 0.8683 | 0.8056 | 29 |
0.0570 | 0.9716 | 0.9779 | 0.8419 | 0.8652 | 0.8088 | 30 |
0.0567 | 0.9769 | 0.9790 | 0.8142 | 0.8715 | 0.8213 | 31 |
0.0520 | 0.9790 | 0.9853 | 0.8440 | 0.8715 | 0.8182 | 32 |
0.0444 | 0.9811 | 0.9832 | 0.8456 | 0.8777 | 0.8182 | 33 |
0.0500 | 0.9748 | 0.9832 | 0.8039 | 0.8777 | 0.8088 | 34 |
0.0480 | 0.9800 | 0.9811 | 0.8078 | 0.8558 | 0.8182 | 35 |
0.0434 | 0.9821 | 0.9821 | 0.8186 | 0.8621 | 0.8276 | 36 |
0.0406 | 0.9842 | 0.9842 | 0.8314 | 0.8715 | 0.8245 | 37 |
0.0395 | 0.9842 | 0.9842 | 0.8117 | 0.8840 | 0.8307 | 38 |
0.0374 | 0.9832 | 0.9874 | 0.8603 | 0.8840 | 0.8276 | 39 |
0.0279 | 0.9884 | 0.9905 | 0.8761 | 0.8934 | 0.8307 | 40 |
0.0329 | 0.9842 | 0.9895 | 0.8870 | 0.8903 | 0.8307 | 41 |
0.0289 | 0.9863 | 0.9874 | 0.8906 | 0.8903 | 0.8307 | 42 |
0.0308 | 0.9853 | 0.9863 | 0.9079 | 0.8840 | 0.8182 | 43 |
0.0311 | 0.9853 | 0.9874 | 0.9111 | 0.8871 | 0.8307 | 44 |
0.0334 | 0.9842 | 0.9832 | 0.9121 | 0.8903 | 0.8276 | 45 |
0.0266 | 0.9874 | 0.9937 | 0.9113 | 0.8871 | 0.8307 | 46 |
0.0310 | 0.9842 | 0.9905 | 0.9117 | 0.8840 | 0.8276 | 47 |
0.0263 | 0.9884 | 0.9926 | 0.9192 | 0.8871 | 0.8307 | 48 |
0.0254 | 0.9874 | 0.9905 | 0.9257 | 0.8777 | 0.8245 | 49 |
0.0266 | 0.9905 | 0.9905 | 0.9270 | 0.8777 | 0.8276 | 50 |
Framework versions
- Transformers 4.41.2
- TensorFlow 2.15.0
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for edyfjm07/distilbert-base-uncased-TIC2-finetuned-squad-es
Base model
distilbert/distilbert-base-uncased