LlaMa 2 7B Python Coder using Unsloth π©βπ»
LlaMa-2 7b fine-tuned on the python_code_instructions_18k_alpaca Code instructions dataset by using the library Unsloth.
Pretrained description
Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters.
Model Architecture Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety
Training data
python_code_instructions_18k_alpaca
The dataset contains problem descriptions and code in python language. This dataset is taken from sahil2801/code_instructions_120k, which adds a prompt column in alpaca style.
Training hyperparameters
SFTTrainer arguments
# Model Parameters
max_seq_length = 2048
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
# LoRA Parameters
r = 16
target_modules = ["gate_proj", "up_proj", "down_proj"]
#target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj",],
lora_alpha = 16
# Training parameters
learning_rate = 2e-4
weight_decay = 0.01
#Evaluation
evaluation_strategy="no"
eval_steps= 50
# if training in epochs
#num_train_epochs=2
#save_strategy="epoch"
# if training in steps
max_steps = 1500
save_strategy="steps"
save_steps=500
logging_steps=100
warmup_steps = 10
warmup_ratio=0.01
batch_size = 4
gradient_accumulation_steps = 4
lr_scheduler_type = "linear"
optimizer = "adamw_8bit"
use_gradient_checkpointing = True
random_state = 42
Framework versions
- Unsloth
Example of usage
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "edumunozsala/unsloth-llama-2-7B-python-coder"
# Load the entire model on the GPU 0
device_map = {"": 0}
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True, torch_dtype=torch.float16,
device_map="auto")
instruction="Write a Python function to display the first and last elements of a list."
input=""
prompt = f"""### Instruction:
Use the Task below and the Input given to write the Response, which is a programming code that can solve the Task.
### Task:
{instruction}
### Input:
{input}
### Response:
"""
input_ids = tokenizer(prompt, return_tensors="pt", truncation=True).input_ids.cuda()
# with torch.inference_mode():
outputs = model.generate(input_ids=input_ids, max_new_tokens=100, do_sample=True, top_p=0.9,temperature=0.3)
print(f"Prompt:\n{prompt}\n")
print(f"Generated instruction:\n{tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0][len(prompt):]}")
Citation
@misc {edumunozsala_2023,
author = { {Eduardo MuΓ±oz} },
title = { unsloth-llama-2-7B-python-coder },
year = 2024,
url = { https://huggingface.co/edumunozsala/unsloth-llama-2-7B-python-coder },
publisher = { Hugging Face }
}
- Downloads last month
- 18