lung-cancer-image-classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0177
  • Precision: 0.9963
  • Recall: 0.9963
  • F1: 0.9963
  • Accuracy: 0.9963
  • Confusion matrix: 1245 1 4 0 1250 0 9 0 1241

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy Confusion matrix
0.3173 0.21 100 0.1952 0.9371 0.9331 0.9339 0.9331 1186 0 64
90 1160 0
97 0 1153
0.1312 0.43 200 0.0752 0.9786 0.9779 0.9778 0.9779 1178 1 71
2 1248 0
9 0 1241
0.1453 0.64 300 0.0688 0.9759 0.9752 0.9752 0.9752 1232 1 17
8 1242 0
67 0 1183
0.0146 0.85 400 0.0485 0.9854 0.9853 0.9853 0.9853 1212 2 36
0 1250 0
17 0 1233
0.0075 1.07 500 0.0376 0.9897 0.9896 0.9896 0.9896 1220 1 29
5 1245 0
4 0 1246
0.054 1.28 600 0.0233 0.9939 0.9939 0.9939 0.9939 1241 1 8
0 1250 0
14 0 1236
0.0272 1.49 700 0.0156 0.9950 0.9949 0.9949 0.9949 1235 1 14
0 1250 0
4 0 1246
0.0307 1.71 800 0.0172 0.9949 0.9949 0.9949 0.9949 1244 1 5
0 1250 0
13 0 1237
0.0022 1.92 900 0.0144 0.9963 0.9963 0.9963 0.9963 1237 1 12
0 1250 0
1 0 1249
0.0015 2.13 1000 0.0156 0.9963 0.9963 0.9963 0.9963 1238 1 11
0 1250 0
2 0 1248
0.0014 2.35 1100 0.0138 0.9971 0.9971 0.9971 0.9971 1243 1 6
0 1250 0
4 0 1246
0.0317 2.56 1200 0.0110 0.9973 0.9973 0.9973 0.9973 1244 1 5
0 1250 0
4 0 1246
0.0011 2.77 1300 0.0159 0.9963 0.9963 0.9963 0.9963 1236 1 13
0 1250 0
0 0 1250
0.0012 2.99 1400 0.0120 0.9971 0.9971 0.9971 0.9971 1239 1 10
0 1250 0
0 0 1250

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.15.2
Downloads last month
8
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ebmonser/lung-cancer-image-classification

Finetuned
(1791)
this model

Evaluation results