Built with Axolotl

See axolotl config

axolotl version: 0.5.0

base_model: Qwen/Qwen2.5-14B-Instruct
trust_remote_code: true

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: main_dataset_v1.json
    type: alpaca

special_tokens:
  bos_token:
  eos_token: "<|im_end|>"
  pad_token: "<|endoftext|>"

dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out

sequence_len: 1024
sample_packing: false
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project: dywoo_axolotl
wandb_entity: dywoo
wandb_watch:
wandb_run_id: 
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 3
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.00005
train_on_inputs:
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
logging_steps: 100
xformers_attention:
flash_attention: true
warmup_ratio: 0.01
eval_steps: 100
save_steps: 100
save_total_limit: 2
eval_sample_packing:
debug:
deepspeed:
weight_decay: 0.01
fsdp:
fsdp_config:

outputs/lora-out

This model is a fine-tuned version of Qwen/Qwen2.5-14B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0749

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Use OptimizerNames.PAGED_ADAMW with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 16
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
No log 0.0019 1 0.3101
0.1179 0.1869 100 0.0830
0.0312 0.3738 200 0.0780
0.0276 0.5607 300 0.0743
0.0256 0.7477 400 0.0692
0.0222 0.9346 500 0.0705
0.0199 1.1215 600 0.0686
0.0174 1.3084 700 0.0695
0.015 1.4953 800 0.0702
0.0158 1.6822 900 0.0721
0.0147 1.8692 1000 0.0706
0.0139 2.0561 1100 0.0701
0.0097 2.2430 1200 0.0739
0.0099 2.4299 1300 0.0745
0.0097 2.6168 1400 0.0745
0.0107 2.8037 1500 0.0746
0.0093 2.9907 1600 0.0749

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.1
  • Pytorch 2.3.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.3
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for dywoo/axolotl-Qwen2.5-14B-n2253-LoRA

Base model

Qwen/Qwen2.5-14B
Adapter
(40)
this model