segformer-b-finetuned-segments-sidewalk-2
This model is a fine-tuned version of nvidia/mit-b0 on the segments/sidewalk-semantic dataset. It achieves the following results on the evaluation set:
- Loss: 0.7733
- Mean Iou: 0.2394
- Mean Accuracy: 0.2885
- Overall Accuracy: 0.8145
- Accuarcy Unlabeled: nan
- Accuarcy Flat-road: 0.9002
- Accuarcy Flat-sidewalk: 0.9256
- Accuarcy Flat-crosswalk: 0.6731
- Accuarcy Flat-cyclinglane: 0.7624
- Accuarcy Flat-parkingdriveway: 0.3720
- Accuarcy Flat-railtrack: nan
- Accuarcy Flat-curb: 0.3753
- Accuarcy Human-person: 0.0482
- Accuarcy Human-rider: 0.0
- Accuarcy Vehicle-car: 0.9125
- Accuarcy Vehicle-truck: 0.0
- Accuarcy Vehicle-bus: 0.0
- Accuarcy Vehicle-tramtrain: nan
- Accuarcy Vehicle-motorcycle: 0.0
- Accuarcy Vehicle-bicycle: 0.0
- Accuarcy Vehicle-caravan: 0.0
- Accuarcy Vehicle-cartrailer: 0.0
- Accuarcy Construction-building: 0.8988
- Accuarcy Construction-door: 0.0
- Accuarcy Construction-wall: 0.3240
- Accuarcy Construction-fenceguardrail: 0.0009
- Accuarcy Construction-bridge: 0.0
- Accuarcy Construction-tunnel: nan
- Accuarcy Construction-stairs: 0.0
- Accuarcy Object-pole: 0.0228
- Accuarcy Object-trafficsign: 0.0
- Accuarcy Object-trafficlight: 0.0
- Accuarcy Nature-vegetation: 0.9283
- Accuarcy Nature-terrain: 0.8528
- Accuarcy Sky: 0.9460
- Accuarcy Void-ground: 0.0
- Accuarcy Void-dynamic: 0.0
- Accuarcy Void-static: 0.0014
- Accuarcy Void-unclear: 0.0
- Iou Unlabeled: nan
- Iou Flat-road: 0.7132
- Iou Flat-sidewalk: 0.8399
- Iou Flat-crosswalk: 0.5677
- Iou Flat-cyclinglane: 0.6711
- Iou Flat-parkingdriveway: 0.2585
- Iou Flat-railtrack: nan
- Iou Flat-curb: 0.3157
- Iou Human-person: 0.0474
- Iou Human-rider: 0.0
- Iou Vehicle-car: 0.7025
- Iou Vehicle-truck: 0.0
- Iou Vehicle-bus: 0.0
- Iou Vehicle-tramtrain: nan
- Iou Vehicle-motorcycle: 0.0
- Iou Vehicle-bicycle: 0.0
- Iou Vehicle-caravan: 0.0
- Iou Vehicle-cartrailer: 0.0
- Iou Construction-building: 0.6194
- Iou Construction-door: 0.0
- Iou Construction-wall: 0.2615
- Iou Construction-fenceguardrail: 0.0009
- Iou Construction-bridge: 0.0
- Iou Construction-tunnel: nan
- Iou Construction-stairs: 0.0
- Iou Object-pole: 0.0227
- Iou Object-trafficsign: 0.0
- Iou Object-trafficlight: 0.0
- Iou Nature-vegetation: 0.7851
- Iou Nature-terrain: 0.7352
- Iou Sky: 0.8791
- Iou Void-ground: 0.0
- Iou Void-dynamic: 0.0
- Iou Void-static: 0.0014
- Iou Void-unclear: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuarcy Unlabeled | Accuarcy Flat-road | Accuarcy Flat-sidewalk | Accuarcy Flat-crosswalk | Accuarcy Flat-cyclinglane | Accuarcy Flat-parkingdriveway | Accuarcy Flat-railtrack | Accuarcy Flat-curb | Accuarcy Human-person | Accuarcy Human-rider | Accuarcy Vehicle-car | Accuarcy Vehicle-truck | Accuarcy Vehicle-bus | Accuarcy Vehicle-tramtrain | Accuarcy Vehicle-motorcycle | Accuarcy Vehicle-bicycle | Accuarcy Vehicle-caravan | Accuarcy Vehicle-cartrailer | Accuarcy Construction-building | Accuarcy Construction-door | Accuarcy Construction-wall | Accuarcy Construction-fenceguardrail | Accuarcy Construction-bridge | Accuarcy Construction-tunnel | Accuarcy Construction-stairs | Accuarcy Object-pole | Accuarcy Object-trafficsign | Accuarcy Object-trafficlight | Accuarcy Nature-vegetation | Accuarcy Nature-terrain | Accuarcy Sky | Accuarcy Void-ground | Accuarcy Void-dynamic | Accuarcy Void-static | Accuarcy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.2728 | 0.59 | 20 | 2.3946 | 0.1035 | 0.1549 | 0.6540 | nan | 0.6440 | 0.9384 | 0.0 | 0.0006 | 0.0001 | nan | 0.0001 | 0.0 | 0.0 | 0.9243 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6269 | 0.0 | 0.0000 | 0.0002 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9320 | 0.0116 | 0.7234 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4920 | 0.6851 | 0.0 | 0.0006 | 0.0001 | nan | 0.0001 | 0.0 | 0.0 | 0.3557 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.4837 | 0.0 | 0.0000 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5828 | 0.0115 | 0.7007 | 0.0 | 0.0 | 0.0 | 0.0 |
1.9006 | 1.18 | 40 | 1.7230 | 0.1153 | 0.1706 | 0.6814 | nan | 0.8635 | 0.8762 | 0.0 | 0.0003 | 0.0003 | nan | 0.0 | 0.0 | 0.0 | 0.8614 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8115 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9315 | 0.0405 | 0.9034 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4876 | 0.7405 | 0.0 | 0.0003 | 0.0003 | nan | 0.0 | 0.0 | 0.0 | 0.5225 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5210 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6069 | 0.0399 | 0.7696 | 0.0 | 0.0 | 0.0 | 0.0 |
1.6721 | 1.76 | 60 | 1.4574 | 0.1289 | 0.1783 | 0.6968 | nan | 0.8799 | 0.8822 | 0.0 | 0.0528 | 0.0003 | nan | 0.0 | 0.0 | 0.0 | 0.8812 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8573 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9298 | 0.1473 | 0.8959 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4937 | 0.7555 | 0.0 | 0.0519 | 0.0003 | nan | 0.0 | 0.0 | 0.0 | 0.5454 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5547 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6303 | 0.1427 | 0.8205 | 0.0 | 0.0 | 0.0 | 0.0 |
1.4066 | 2.35 | 80 | 1.3422 | 0.1589 | 0.2055 | 0.7457 | nan | 0.8230 | 0.9475 | 0.0 | 0.3015 | 0.0047 | nan | 0.0000 | 0.0 | 0.0 | 0.8977 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8695 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9091 | 0.6841 | 0.9322 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6093 | 0.7599 | 0.0 | 0.2787 | 0.0046 | nan | 0.0000 | 0.0 | 0.0 | 0.5489 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5596 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7275 | 0.6092 | 0.8285 | 0.0 | 0.0 | 0.0 | 0.0 |
1.3429 | 2.94 | 100 | 1.1795 | 0.1653 | 0.2103 | 0.7562 | nan | 0.8569 | 0.9495 | 0.0 | 0.3507 | 0.0066 | nan | 0.0000 | 0.0 | 0.0 | 0.8981 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8869 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9026 | 0.7728 | 0.8950 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6153 | 0.7730 | 0.0 | 0.3326 | 0.0065 | nan | 0.0000 | 0.0 | 0.0 | 0.5899 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5742 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7403 | 0.6481 | 0.8448 | 0.0 | 0.0 | 0.0 | 0.0 |
1.2661 | 3.53 | 120 | 1.1008 | 0.1712 | 0.2174 | 0.7629 | nan | 0.8484 | 0.9495 | 0.0 | 0.4917 | 0.0181 | nan | 0.0001 | 0.0 | 0.0 | 0.8996 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9043 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8869 | 0.8036 | 0.9371 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6100 | 0.7894 | 0.0 | 0.4346 | 0.0175 | nan | 0.0001 | 0.0 | 0.0 | 0.6153 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5608 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7533 | 0.6752 | 0.8508 | 0.0 | 0.0 | 0.0 | 0.0 |
1.2166 | 4.12 | 140 | 1.0514 | 0.1771 | 0.2232 | 0.7695 | nan | 0.8815 | 0.9342 | 0.0 | 0.5539 | 0.0713 | nan | 0.0030 | 0.0 | 0.0 | 0.9014 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9029 | 0.0 | 0.0016 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9068 | 0.8398 | 0.9225 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6195 | 0.7981 | 0.0 | 0.5017 | 0.0642 | nan | 0.0030 | 0.0 | 0.0 | 0.6222 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5694 | 0.0 | 0.0016 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7585 | 0.6979 | 0.8546 | 0.0 | 0.0 | 0.0 | 0.0 |
1.0262 | 4.71 | 160 | 1.0025 | 0.1782 | 0.2236 | 0.7665 | nan | 0.9188 | 0.9111 | 0.0 | 0.5462 | 0.1006 | nan | 0.0031 | 0.0 | 0.0 | 0.8814 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8881 | 0.0 | 0.0027 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9260 | 0.8130 | 0.9404 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5776 | 0.8071 | 0.0 | 0.5005 | 0.0888 | nan | 0.0031 | 0.0 | 0.0 | 0.6651 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5803 | 0.0 | 0.0027 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7415 | 0.7028 | 0.8558 | 0.0 | 0.0 | 0.0 | 0.0 |
1.0928 | 5.29 | 180 | 0.9698 | 0.1852 | 0.2308 | 0.7778 | nan | 0.8513 | 0.9428 | 0.0 | 0.6760 | 0.1497 | nan | 0.0419 | 0.0 | 0.0 | 0.8856 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9132 | 0.0 | 0.0056 | 0.0 | 0.0 | nan | 0.0 | 0.0002 | 0.0 | 0.0 | 0.9134 | 0.8535 | 0.9219 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6410 | 0.8062 | 0.0 | 0.5617 | 0.1228 | nan | 0.0405 | 0.0 | 0.0 | 0.6597 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5705 | 0.0 | 0.0056 | 0.0 | 0.0 | nan | 0.0 | 0.0002 | 0.0 | 0.0 | 0.7603 | 0.7081 | 0.8642 | 0.0 | 0.0 | 0.0 | 0.0 |
0.8736 | 5.88 | 200 | 0.9250 | 0.1906 | 0.2370 | 0.7850 | nan | 0.9149 | 0.9249 | 0.0001 | 0.7226 | 0.1944 | nan | 0.0715 | 0.0027 | 0.0 | 0.8853 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8917 | 0.0 | 0.0153 | 0.0 | 0.0 | nan | 0.0 | 0.0005 | 0.0 | 0.0 | 0.9353 | 0.8470 | 0.9402 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6511 | 0.8250 | 0.0001 | 0.5978 | 0.1516 | nan | 0.0682 | 0.0027 | 0.0 | 0.6817 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5862 | 0.0 | 0.0152 | 0.0 | 0.0 | nan | 0.0 | 0.0005 | 0.0 | 0.0 | 0.7477 | 0.7159 | 0.8635 | 0.0 | 0.0 | 0.0 | 0.0 |
0.7832 | 6.47 | 220 | 0.8852 | 0.1961 | 0.2421 | 0.7875 | nan | 0.8962 | 0.9385 | 0.0642 | 0.6975 | 0.2064 | nan | 0.1581 | 0.0003 | 0.0 | 0.8995 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9011 | 0.0 | 0.0392 | 0.0 | 0.0 | nan | 0.0 | 0.0009 | 0.0 | 0.0 | 0.8974 | 0.8728 | 0.9342 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6576 | 0.8222 | 0.0624 | 0.6239 | 0.1577 | nan | 0.1421 | 0.0003 | 0.0 | 0.6802 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5989 | 0.0 | 0.0383 | 0.0 | 0.0 | nan | 0.0 | 0.0009 | 0.0 | 0.0 | 0.7547 | 0.6706 | 0.8700 | 0.0 | 0.0 | 0.0 | 0.0 |
0.7822 | 7.06 | 240 | 0.8621 | 0.2145 | 0.2598 | 0.7992 | nan | 0.8827 | 0.9398 | 0.4415 | 0.7426 | 0.2656 | nan | 0.2218 | 0.0023 | 0.0 | 0.8967 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9092 | 0.0 | 0.0558 | 0.0000 | 0.0 | nan | 0.0 | 0.0020 | 0.0 | 0.0 | 0.9249 | 0.8259 | 0.9429 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6911 | 0.8250 | 0.3902 | 0.6320 | 0.2017 | nan | 0.1950 | 0.0023 | 0.0 | 0.6915 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5886 | 0.0 | 0.0540 | 0.0000 | 0.0 | nan | 0.0 | 0.0020 | 0.0 | 0.0 | 0.7732 | 0.7329 | 0.8703 | 0.0 | 0.0 | 0.0 | 0.0 |
0.6742 | 7.65 | 260 | 0.8371 | 0.2193 | 0.2667 | 0.8027 | nan | 0.8766 | 0.9312 | 0.3983 | 0.7724 | 0.2975 | nan | 0.2975 | 0.0055 | 0.0 | 0.9111 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9086 | 0.0 | 0.1602 | 0.0001 | 0.0 | nan | 0.0 | 0.0034 | 0.0 | 0.0 | 0.9371 | 0.8321 | 0.9353 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.6894 | 0.8388 | 0.3591 | 0.6398 | 0.2119 | nan | 0.2519 | 0.0055 | 0.0 | 0.6754 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6033 | 0.0 | 0.1492 | 0.0001 | 0.0 | nan | 0.0 | 0.0034 | 0.0 | 0.0 | 0.7671 | 0.7293 | 0.8750 | 0.0 | 0.0 | 0.0000 | 0.0 |
0.8116 | 8.24 | 280 | 0.8277 | 0.2314 | 0.2819 | 0.8087 | nan | 0.8894 | 0.9207 | 0.6812 | 0.7773 | 0.3594 | nan | 0.3120 | 0.0109 | 0.0 | 0.9016 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8885 | 0.0 | 0.2424 | 0.0005 | 0.0 | nan | 0.0 | 0.0107 | 0.0 | 0.0 | 0.9398 | 0.8575 | 0.9461 | 0.0 | 0.0 | 0.0003 | 0.0 | nan | 0.7112 | 0.8407 | 0.5738 | 0.6399 | 0.2424 | nan | 0.2666 | 0.0108 | 0.0 | 0.6924 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6145 | 0.0 | 0.2148 | 0.0005 | 0.0 | nan | 0.0 | 0.0106 | 0.0 | 0.0 | 0.7579 | 0.7244 | 0.8738 | 0.0 | 0.0 | 0.0003 | 0.0 |
0.7791 | 8.82 | 300 | 0.8059 | 0.2255 | 0.2723 | 0.8077 | nan | 0.8684 | 0.9414 | 0.4680 | 0.7998 | 0.2901 | nan | 0.3174 | 0.0107 | 0.0 | 0.8846 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9111 | 0.0 | 0.2193 | 0.0000 | 0.0 | nan | 0.0 | 0.0099 | 0.0 | 0.0 | 0.9290 | 0.8439 | 0.9465 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.7039 | 0.8383 | 0.4188 | 0.6308 | 0.2131 | nan | 0.2698 | 0.0106 | 0.0 | 0.7114 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6008 | 0.0 | 0.1942 | 0.0000 | 0.0 | nan | 0.0 | 0.0099 | 0.0 | 0.0 | 0.7791 | 0.7343 | 0.8760 | 0.0 | 0.0 | 0.0000 | 0.0 |
0.7334 | 9.41 | 320 | 0.7962 | 0.2342 | 0.2830 | 0.8117 | nan | 0.8921 | 0.9332 | 0.6837 | 0.7454 | 0.3381 | nan | 0.3264 | 0.0298 | 0.0 | 0.9198 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9018 | 0.0 | 0.2712 | 0.0003 | 0.0 | nan | 0.0 | 0.0182 | 0.0 | 0.0 | 0.9194 | 0.8508 | 0.9434 | 0.0 | 0.0 | 0.0008 | 0.0 | nan | 0.7121 | 0.8388 | 0.5627 | 0.6590 | 0.2316 | nan | 0.2794 | 0.0296 | 0.0 | 0.6884 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6204 | 0.0 | 0.2324 | 0.0003 | 0.0 | nan | 0.0 | 0.0182 | 0.0 | 0.0 | 0.7820 | 0.7278 | 0.8762 | 0.0 | 0.0 | 0.0008 | 0.0 |
0.7645 | 10.0 | 340 | 0.7783 | 0.2342 | 0.2809 | 0.8133 | nan | 0.8999 | 0.9347 | 0.5997 | 0.7491 | 0.3278 | nan | 0.3613 | 0.0164 | 0.0 | 0.9043 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9156 | 0.0 | 0.2684 | 0.0003 | 0.0 | nan | 0.0 | 0.0167 | 0.0 | 0.0 | 0.9235 | 0.8454 | 0.9455 | 0.0 | 0.0 | 0.0007 | 0.0 | nan | 0.7218 | 0.8409 | 0.5162 | 0.6738 | 0.2390 | nan | 0.3039 | 0.0162 | 0.0 | 0.7015 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6019 | 0.0 | 0.2260 | 0.0003 | 0.0 | nan | 0.0 | 0.0167 | 0.0 | 0.0 | 0.7860 | 0.7381 | 0.8764 | 0.0 | 0.0 | 0.0007 | 0.0 |
0.6792 | 10.59 | 360 | 0.7774 | 0.2358 | 0.2841 | 0.8141 | nan | 0.8954 | 0.9341 | 0.6272 | 0.7826 | 0.3543 | nan | 0.3360 | 0.0300 | 0.0 | 0.9162 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8964 | 0.0 | 0.2909 | 0.0005 | 0.0 | nan | 0.0 | 0.0199 | 0.0 | 0.0 | 0.9226 | 0.8558 | 0.9443 | 0.0 | 0.0 | 0.0010 | 0.0 | nan | 0.7198 | 0.8402 | 0.5426 | 0.6699 | 0.2489 | nan | 0.2900 | 0.0297 | 0.0 | 0.6966 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6186 | 0.0 | 0.2450 | 0.0005 | 0.0 | nan | 0.0 | 0.0199 | 0.0 | 0.0 | 0.7835 | 0.7251 | 0.8784 | 0.0 | 0.0 | 0.0010 | 0.0 |
0.8047 | 11.18 | 380 | 0.7734 | 0.2388 | 0.2878 | 0.8147 | nan | 0.8924 | 0.9265 | 0.6512 | 0.7739 | 0.3846 | nan | 0.3762 | 0.0383 | 0.0 | 0.9122 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9053 | 0.0 | 0.3142 | 0.0005 | 0.0 | nan | 0.0 | 0.0216 | 0.0 | 0.0 | 0.9303 | 0.8513 | 0.9427 | 0.0 | 0.0 | 0.0014 | 0.0 | nan | 0.7171 | 0.8421 | 0.5575 | 0.6761 | 0.2609 | nan | 0.3165 | 0.0376 | 0.0 | 0.6982 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6155 | 0.0 | 0.2551 | 0.0005 | 0.0 | nan | 0.0 | 0.0215 | 0.0 | 0.0 | 0.7854 | 0.7377 | 0.8797 | 0.0 | 0.0 | 0.0014 | 0.0 |
0.7136 | 11.76 | 400 | 0.7733 | 0.2394 | 0.2885 | 0.8145 | nan | 0.9002 | 0.9256 | 0.6731 | 0.7624 | 0.3720 | nan | 0.3753 | 0.0482 | 0.0 | 0.9125 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8988 | 0.0 | 0.3240 | 0.0009 | 0.0 | nan | 0.0 | 0.0228 | 0.0 | 0.0 | 0.9283 | 0.8528 | 0.9460 | 0.0 | 0.0 | 0.0014 | 0.0 | nan | 0.7132 | 0.8399 | 0.5677 | 0.6711 | 0.2585 | nan | 0.3157 | 0.0474 | 0.0 | 0.7025 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6194 | 0.0 | 0.2615 | 0.0009 | 0.0 | nan | 0.0 | 0.0227 | 0.0 | 0.0 | 0.7851 | 0.7352 | 0.8791 | 0.0 | 0.0 | 0.0014 | 0.0 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.2
- Downloads last month
- 190
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for dwang-LI/segformer-b-finetuned-segments-sidewalk-2
Base model
nvidia/mit-b0