metadata
license: apache-2.0
base_model: google/vit-large-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: image_classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.51875
image_classification
This model is a fine-tuned version of google/vit-large-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.5386
- Accuracy: 0.5188
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.0473 | 1.0 | 20 | 2.0179 | 0.175 |
1.6184 | 2.0 | 40 | 1.7787 | 0.2437 |
1.2134 | 3.0 | 60 | 1.5985 | 0.3625 |
1.0157 | 4.0 | 80 | 1.3311 | 0.4813 |
0.8578 | 5.0 | 100 | 1.3041 | 0.4875 |
0.6496 | 6.0 | 120 | 1.3222 | 0.5062 |
0.5972 | 7.0 | 140 | 1.5594 | 0.4562 |
0.5073 | 8.0 | 160 | 1.4126 | 0.4813 |
0.3964 | 9.0 | 180 | 1.3702 | 0.525 |
0.4054 | 10.0 | 200 | 1.3894 | 0.5188 |
0.2845 | 11.0 | 220 | 1.4471 | 0.5188 |
0.2262 | 12.0 | 240 | 1.5165 | 0.525 |
0.2412 | 13.0 | 260 | 1.4684 | 0.5125 |
0.2229 | 14.0 | 280 | 1.4005 | 0.525 |
0.2078 | 15.0 | 300 | 1.5629 | 0.5062 |
0.1619 | 16.0 | 320 | 1.6014 | 0.525 |
0.1834 | 17.0 | 340 | 1.4821 | 0.5125 |
0.1594 | 18.0 | 360 | 1.5195 | 0.5375 |
0.1249 | 19.0 | 380 | 1.5585 | 0.5188 |
0.1117 | 20.0 | 400 | 1.4735 | 0.5687 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1