dukenmarga's picture
End of training
3f2c61b verified
|
raw
history blame
2.99 kB
metadata
license: apache-2.0
base_model: google/vit-large-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: image_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.51875

image_classification

This model is a fine-tuned version of google/vit-large-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5386
  • Accuracy: 0.5188

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0473 1.0 20 2.0179 0.175
1.6184 2.0 40 1.7787 0.2437
1.2134 3.0 60 1.5985 0.3625
1.0157 4.0 80 1.3311 0.4813
0.8578 5.0 100 1.3041 0.4875
0.6496 6.0 120 1.3222 0.5062
0.5972 7.0 140 1.5594 0.4562
0.5073 8.0 160 1.4126 0.4813
0.3964 9.0 180 1.3702 0.525
0.4054 10.0 200 1.3894 0.5188
0.2845 11.0 220 1.4471 0.5188
0.2262 12.0 240 1.5165 0.525
0.2412 13.0 260 1.4684 0.5125
0.2229 14.0 280 1.4005 0.525
0.2078 15.0 300 1.5629 0.5062
0.1619 16.0 320 1.6014 0.525
0.1834 17.0 340 1.4821 0.5125
0.1594 18.0 360 1.5195 0.5375
0.1249 19.0 380 1.5585 0.5188
0.1117 20.0 400 1.4735 0.5687

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1