File size: 2,987 Bytes
051105f 57458a3 051105f 3f2c61b 051105f 57458a3 051105f 3f2c61b 051105f 3f2c61b 051105f 3f2c61b 051105f 3f2c61b 051105f 3f2c61b 051105f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
license: apache-2.0
base_model: google/vit-large-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: image_classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.51875
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# image_classification
This model is a fine-tuned version of [google/vit-large-patch16-224-in21k](https://huggingface.co/google/vit-large-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5386
- Accuracy: 0.5188
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.0473 | 1.0 | 20 | 2.0179 | 0.175 |
| 1.6184 | 2.0 | 40 | 1.7787 | 0.2437 |
| 1.2134 | 3.0 | 60 | 1.5985 | 0.3625 |
| 1.0157 | 4.0 | 80 | 1.3311 | 0.4813 |
| 0.8578 | 5.0 | 100 | 1.3041 | 0.4875 |
| 0.6496 | 6.0 | 120 | 1.3222 | 0.5062 |
| 0.5972 | 7.0 | 140 | 1.5594 | 0.4562 |
| 0.5073 | 8.0 | 160 | 1.4126 | 0.4813 |
| 0.3964 | 9.0 | 180 | 1.3702 | 0.525 |
| 0.4054 | 10.0 | 200 | 1.3894 | 0.5188 |
| 0.2845 | 11.0 | 220 | 1.4471 | 0.5188 |
| 0.2262 | 12.0 | 240 | 1.5165 | 0.525 |
| 0.2412 | 13.0 | 260 | 1.4684 | 0.5125 |
| 0.2229 | 14.0 | 280 | 1.4005 | 0.525 |
| 0.2078 | 15.0 | 300 | 1.5629 | 0.5062 |
| 0.1619 | 16.0 | 320 | 1.6014 | 0.525 |
| 0.1834 | 17.0 | 340 | 1.4821 | 0.5125 |
| 0.1594 | 18.0 | 360 | 1.5195 | 0.5375 |
| 0.1249 | 19.0 | 380 | 1.5585 | 0.5188 |
| 0.1117 | 20.0 | 400 | 1.4735 | 0.5687 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|