image_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1383
  • Accuracy: 0.6312

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.925 1.0 10 1.3570 0.4688
0.8379 2.0 20 1.1685 0.5875
0.6737 3.0 30 1.1795 0.6
0.4606 4.0 40 1.1383 0.6312
0.3416 5.0 50 1.2393 0.5687
0.2493 6.0 60 1.3971 0.5938
0.2341 7.0 70 1.3546 0.6062
0.1797 8.0 80 1.3681 0.5938
0.1221 9.0 90 1.6936 0.525
0.1077 10.0 100 1.7008 0.5375
0.0966 11.0 110 1.7380 0.525
0.1073 12.0 120 1.5617 0.575
0.0849 13.0 130 1.6178 0.6125
0.0704 14.0 140 1.6144 0.6125
0.0568 15.0 150 1.6111 0.6188
0.0555 16.0 160 1.5946 0.6
0.0498 17.0 170 1.6291 0.625
0.0464 18.0 180 1.6574 0.6188
0.0443 19.0 190 1.6740 0.6125
0.0429 20.0 200 1.6781 0.6125

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
211
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dukenmarga/image_classification

Finetuned
(1777)
this model

Evaluation results