Edit model card

16class_all9k_promptcorr_tweet_300other_23nov23_v1

This model is a fine-tuned version of bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0267
  • Accuracy: 0.9947

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 11

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.5225 1.0 721 0.6075 0.8344
0.7164 2.0 1442 0.3430 0.9051
0.3828 3.0 2163 0.2532 0.9271
0.318 4.0 2884 0.1631 0.9572
0.2131 5.0 3605 0.1231 0.9676
0.1728 6.0 4326 0.0822 0.9807
0.1344 7.0 5047 0.0657 0.9849
0.0902 8.0 5768 0.0471 0.9887
0.0842 9.0 6489 0.0383 0.9912
0.0609 10.0 7210 0.0281 0.9941
0.0512 11.0 7931 0.0267 0.9947

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
8
Safetensors
Model size
178M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dsmsb/16class_all9k_promptcorr_tweet_300other_23nov23_v1

Finetuned
(511)
this model