See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen1.5-0.5B-Chat
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 7763efccdee65ec1_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/7763efccdee65ec1_train_data.json
type:
field_input: text
field_instruction: input
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: dsakerkwq/3dc68e57-4d68-45da-90d6-b18b56865877
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 75GiB
max_steps: 30
micro_batch_size: 2
mlflow_experiment_name: /tmp/7763efccdee65ec1_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 3dc68e57-4d68-45da-90d6-b18b56865877
wandb_project: Gradients-On-Demand
wandb_runid: 3dc68e57-4d68-45da-90d6-b18b56865877
warmup_steps: 100
weight_decay: 0.01
xformers_attention: false
3dc68e57-4d68-45da-90d6-b18b56865877
This model is a fine-tuned version of Qwen/Qwen1.5-0.5B-Chat on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1828
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 30
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.6096 | 0.0001 | 1 | 0.9462 |
0.7787 | 0.0003 | 3 | 0.9371 |
1.8194 | 0.0006 | 6 | 0.8468 |
0.3322 | 0.0009 | 9 | 0.6456 |
0.3036 | 0.0012 | 12 | 0.4959 |
0.2457 | 0.0015 | 15 | 0.4270 |
0.151 | 0.0018 | 18 | 0.3516 |
0.1293 | 0.0021 | 21 | 0.2962 |
0.0827 | 0.0024 | 24 | 0.2342 |
0.0525 | 0.0027 | 27 | 0.2070 |
0.0386 | 0.0030 | 30 | 0.1828 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 7
Model tree for dsakerkwq/3dc68e57-4d68-45da-90d6-b18b56865877
Base model
Qwen/Qwen1.5-0.5B-Chat