led-base-16384-biolaysum-both-all
This model is a fine-tuned version of allenai/led-base-16384 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.1320
- Rouge1: 0.4554
- Rouge2: 0.1583
- Rougel: 0.2462
- Rougelsum: 0.2464
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|
2.2477 | 0.69 | 5000 | 2.1940 | 0.4501 | 0.1552 | 0.2441 | 0.2442 |
2.0151 | 1.37 | 10000 | 2.1320 | 0.4554 | 0.1583 | 0.2462 | 0.2464 |
1.8991 | 2.06 | 15000 | 2.0994 | 0.4561 | 0.1561 | 0.2436 | 0.2437 |
1.877 | 2.75 | 20000 | 2.0860 | 0.4588 | 0.1582 | 0.2452 | 0.2453 |
1.753 | 3.43 | 25000 | 2.0723 | 0.4566 | 0.1569 | 0.2455 | 0.2457 |
Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1
- Datasets 2.10.1
- Tokenizers 0.12.1
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.