Running Simulate on GCP
Setting up the VM
We recommend using Google’s Deep Learning VM to quickly suitable a compatible VM instance.
In addition, we recommend attaching a GPU in order to render camera observations and train more quickly. We also recommend setting the vCPU count to be as high as possible.
Installing Dependencies for Headless Rendering
In order to perform offscreen rendering, there are a number of additional dependencies to install.
Please run the following:
sudo apt update
sudo apt upgrade
sudo apt install -y xorg-dev libglu1-mesa libglu1-mesa-dev libgl1-mesa-dev freeglut3-dev mesa-common-dev xvfb libxinerama1 libxcursor1 mesa-utils
sudo apt-get install xserver-xorg
Now we need to identify which busid your GPU is using:
Now we need to identify which build your GPU is using and add it to your xorg config file:
# run this command to find your GPU bus id (for example PCI:0:30:0)
nvidia-xconfig --query-gpu-info
# replace the busid flag with your value
# Note: with headless GPUs (e.g. Tesla T4), which don't have display outputs, remove the --use-display-device=none option
sudo nvidia-xconfig --busid=PCI:0:30:0 --use-display-device=none --virtual=1280x1024
We can now start an X server:
sudo Xorg :0
Run the following to confirm that offscreen rendering is working.
DISPLAY=:0 glxinfo | grep version
DISPLAY=:0 glxgears
nvidia-smi # xorg should show up in the running programs
Important! The DISPLAY=:0
environment variable must be set before you launch Simulate.
export DISPLAY=:0
Install Simulate
Your VM is now set up for headless training. Follow the installation instructions from the README