Hub Python Library documentation
Inference types
Inference types
This page lists the types (e.g. dataclasses) available for each task supported on the Hugging Face Hub. Each task is specified using a JSON schema, and the types are generated from these schemas - with some customization due to Python requirements. Visit @huggingface.js/tasks to find the JSON schemas for each task.
This part of the lib is still under development and will be improved in future releases.
audio_classification
class huggingface_hub.AudioClassificationInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.audio_classification.AudioClassificationParameters] = None )
Inputs for Audio Classification inference
Outputs for Audio Classification inference
class huggingface_hub.AudioClassificationParameters
< source >( function_to_apply: typing.Optional[ForwardRef('AudioClassificationOutputTransform')] = None top_k: typing.Optional[int] = None )
Additional inference parameters for Audio Classification
audio_to_audio
Inputs for Audio to Audio inference
class huggingface_hub.AudioToAudioOutputElement
< source >( blob: typing.Any content_type: str label: str )
Outputs of inference for the Audio To Audio task A generated audio file with its label.
automatic_speech_recognition
class huggingface_hub.AutomaticSpeechRecognitionGenerationParameters
< source >( do_sample: typing.Optional[bool] = None early_stopping: typing.Union[bool, ForwardRef('AutomaticSpeechRecognitionEarlyStoppingEnum'), NoneType] = None epsilon_cutoff: typing.Optional[float] = None eta_cutoff: typing.Optional[float] = None max_length: typing.Optional[int] = None max_new_tokens: typing.Optional[int] = None min_length: typing.Optional[int] = None min_new_tokens: typing.Optional[int] = None num_beam_groups: typing.Optional[int] = None num_beams: typing.Optional[int] = None penalty_alpha: typing.Optional[float] = None temperature: typing.Optional[float] = None top_k: typing.Optional[int] = None top_p: typing.Optional[float] = None typical_p: typing.Optional[float] = None use_cache: typing.Optional[bool] = None )
Parametrization of the text generation process
class huggingface_hub.AutomaticSpeechRecognitionInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.automatic_speech_recognition.AutomaticSpeechRecognitionParameters] = None )
Inputs for Automatic Speech Recognition inference
class huggingface_hub.AutomaticSpeechRecognitionOutput
< source >( text: str chunks: typing.Optional[list[huggingface_hub.inference._generated.types.automatic_speech_recognition.AutomaticSpeechRecognitionOutputChunk]] = None )
Outputs of inference for the Automatic Speech Recognition task
class huggingface_hub.AutomaticSpeechRecognitionOutputChunk
< source >( text: str timestamp: list )
class huggingface_hub.AutomaticSpeechRecognitionParameters
< source >( generation_parameters: typing.Optional[huggingface_hub.inference._generated.types.automatic_speech_recognition.AutomaticSpeechRecognitionGenerationParameters] = None return_timestamps: typing.Optional[bool] = None )
Additional inference parameters for Automatic Speech Recognition
chat_completion
class huggingface_hub.ChatCompletionInput
< source >( messages: list frequency_penalty: typing.Optional[float] = None logit_bias: typing.Optional[list[float]] = None logprobs: typing.Optional[bool] = None max_tokens: typing.Optional[int] = None model: typing.Optional[str] = None n: typing.Optional[int] = None presence_penalty: typing.Optional[float] = None response_format: typing.Union[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionInputResponseFormatText, huggingface_hub.inference._generated.types.chat_completion.ChatCompletionInputResponseFormatJSONSchema, huggingface_hub.inference._generated.types.chat_completion.ChatCompletionInputResponseFormatJSONObject, NoneType] = None seed: typing.Optional[int] = None stop: typing.Optional[list[str]] = None stream: typing.Optional[bool] = None stream_options: typing.Optional[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionInputStreamOptions] = None temperature: typing.Optional[float] = None tool_choice: typing.Union[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionInputToolChoiceClass, ForwardRef('ChatCompletionInputToolChoiceEnum'), NoneType] = None tool_prompt: typing.Optional[str] = None tools: typing.Optional[list[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionInputTool]] = None top_logprobs: typing.Optional[int] = None top_p: typing.Optional[float] = None )
Chat Completion Input. Auto-generated from TGI specs. For more details, check out https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts.
class huggingface_hub.ChatCompletionInputFunctionDefinition
< source >( name: str parameters: typing.Any description: typing.Optional[str] = None )
class huggingface_hub.ChatCompletionInputJSONSchema
< source >( name: str description: typing.Optional[str] = None schema: typing.Optional[dict[str, object]] = None strict: typing.Optional[bool] = None )
class huggingface_hub.ChatCompletionInputMessage
< source >( role: str content: typing.Union[list[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionInputMessageChunk], str, NoneType] = None name: typing.Optional[str] = None tool_calls: typing.Optional[list[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionInputToolCall]] = None )
class huggingface_hub.ChatCompletionInputMessageChunk
< source >( type: ChatCompletionInputMessageChunkType image_url: typing.Optional[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionInputURL] = None text: typing.Optional[str] = None )
class huggingface_hub.ChatCompletionInputResponseFormatJSONObject
< source >( type: typing.Literal['json_object'] )
class huggingface_hub.ChatCompletionInputResponseFormatJSONSchema
< source >( type: typing.Literal['json_schema'] json_schema: ChatCompletionInputJSONSchema )
class huggingface_hub.ChatCompletionInputResponseFormatText
< source >( type: typing.Literal['text'] )
class huggingface_hub.ChatCompletionInputStreamOptions
< source >( include_usage: typing.Optional[bool] = None )
class huggingface_hub.ChatCompletionInputTool
< source >( function: ChatCompletionInputFunctionDefinition type: str )
class huggingface_hub.ChatCompletionInputToolCall
< source >( function: ChatCompletionInputFunctionDefinition id: str type: str )
class huggingface_hub.ChatCompletionInputToolChoiceClass
< source >( function: ChatCompletionInputFunctionName )
class huggingface_hub.ChatCompletionOutput
< source >( choices: list created: int id: str model: str system_fingerprint: str usage: ChatCompletionOutputUsage )
Chat Completion Output. Auto-generated from TGI specs. For more details, check out https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts.
class huggingface_hub.ChatCompletionOutputComplete
< source >( finish_reason: str index: int message: ChatCompletionOutputMessage logprobs: typing.Optional[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionOutputLogprobs] = None )
class huggingface_hub.ChatCompletionOutputFunctionDefinition
< source >( arguments: str name: str description: typing.Optional[str] = None )
class huggingface_hub.ChatCompletionOutputLogprob
< source >( logprob: float token: str top_logprobs: list )
class huggingface_hub.ChatCompletionOutputMessage
< source >( role: str content: typing.Optional[str] = None reasoning: typing.Optional[str] = None tool_call_id: typing.Optional[str] = None tool_calls: typing.Optional[list[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionOutputToolCall]] = None )
class huggingface_hub.ChatCompletionOutputToolCall
< source >( function: ChatCompletionOutputFunctionDefinition id: str type: str )
class huggingface_hub.ChatCompletionOutputUsage
< source >( completion_tokens: int prompt_tokens: int total_tokens: int )
class huggingface_hub.ChatCompletionStreamOutput
< source >( choices: list created: int id: str model: str system_fingerprint: str usage: typing.Optional[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionStreamOutputUsage] = None )
Chat Completion Stream Output. Auto-generated from TGI specs. For more details, check out https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts.
class huggingface_hub.ChatCompletionStreamOutputChoice
< source >( delta: ChatCompletionStreamOutputDelta index: int finish_reason: typing.Optional[str] = None logprobs: typing.Optional[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionStreamOutputLogprobs] = None )
class huggingface_hub.ChatCompletionStreamOutputDelta
< source >( role: str content: typing.Optional[str] = None reasoning: typing.Optional[str] = None tool_call_id: typing.Optional[str] = None tool_calls: typing.Optional[list[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionStreamOutputDeltaToolCall]] = None )
class huggingface_hub.ChatCompletionStreamOutputDeltaToolCall
< source >( function: ChatCompletionStreamOutputFunction id: str index: int type: str )
class huggingface_hub.ChatCompletionStreamOutputFunction
< source >( arguments: str name: typing.Optional[str] = None )
class huggingface_hub.ChatCompletionStreamOutputLogprob
< source >( logprob: float token: str top_logprobs: list )
class huggingface_hub.ChatCompletionStreamOutputUsage
< source >( completion_tokens: int prompt_tokens: int total_tokens: int )
depth_estimation
class huggingface_hub.DepthEstimationInput
< source >( inputs: typing.Any parameters: typing.Optional[dict[str, typing.Any]] = None )
Inputs for Depth Estimation inference
class huggingface_hub.DepthEstimationOutput
< source >( depth: typing.Any predicted_depth: typing.Any )
Outputs of inference for the Depth Estimation task
document_question_answering
class huggingface_hub.DocumentQuestionAnsweringInput
< source >( inputs: DocumentQuestionAnsweringInputData parameters: typing.Optional[huggingface_hub.inference._generated.types.document_question_answering.DocumentQuestionAnsweringParameters] = None )
Inputs for Document Question Answering inference
class huggingface_hub.DocumentQuestionAnsweringInputData
< source >( image: typing.Any question: str )
One (document, question) pair to answer
class huggingface_hub.DocumentQuestionAnsweringOutputElement
< source >( answer: str end: int score: float start: int )
Outputs of inference for the Document Question Answering task
class huggingface_hub.DocumentQuestionAnsweringParameters
< source >( doc_stride: typing.Optional[int] = None handle_impossible_answer: typing.Optional[bool] = None lang: typing.Optional[str] = None max_answer_len: typing.Optional[int] = None max_question_len: typing.Optional[int] = None max_seq_len: typing.Optional[int] = None top_k: typing.Optional[int] = None word_boxes: typing.Optional[list[typing.Union[list[float], str]]] = None )
Additional inference parameters for Document Question Answering
feature_extraction
class huggingface_hub.FeatureExtractionInput
< source >( inputs: typing.Union[list[str], str] normalize: typing.Optional[bool] = None prompt_name: typing.Optional[str] = None truncate: typing.Optional[bool] = None truncation_direction: typing.Optional[ForwardRef('FeatureExtractionInputTruncationDirection')] = None )
Feature Extraction Input. Auto-generated from TEI specs. For more details, check out https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tei-import.ts.
fill_mask
class huggingface_hub.FillMaskInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.fill_mask.FillMaskParameters] = None )
Inputs for Fill Mask inference
class huggingface_hub.FillMaskOutputElement
< source >( score: float sequence: str token: int token_str: typing.Any fill_mask_output_token_str: typing.Optional[str] = None )
Outputs of inference for the Fill Mask task
class huggingface_hub.FillMaskParameters
< source >( targets: typing.Optional[list[str]] = None top_k: typing.Optional[int] = None )
Additional inference parameters for Fill Mask
image_classification
class huggingface_hub.ImageClassificationInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.image_classification.ImageClassificationParameters] = None )
Inputs for Image Classification inference
Outputs of inference for the Image Classification task
class huggingface_hub.ImageClassificationParameters
< source >( function_to_apply: typing.Optional[ForwardRef('ImageClassificationOutputTransform')] = None top_k: typing.Optional[int] = None )
Additional inference parameters for Image Classification
image_segmentation
class huggingface_hub.ImageSegmentationInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.image_segmentation.ImageSegmentationParameters] = None )
Inputs for Image Segmentation inference
class huggingface_hub.ImageSegmentationOutputElement
< source >( label: str mask: str score: typing.Optional[float] = None )
Outputs of inference for the Image Segmentation task A predicted mask / segment
class huggingface_hub.ImageSegmentationParameters
< source >( mask_threshold: typing.Optional[float] = None overlap_mask_area_threshold: typing.Optional[float] = None subtask: typing.Optional[ForwardRef('ImageSegmentationSubtask')] = None threshold: typing.Optional[float] = None )
Additional inference parameters for Image Segmentation
image_to_image
class huggingface_hub.ImageToImageInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.image_to_image.ImageToImageParameters] = None )
Inputs for Image To Image inference
Outputs of inference for the Image To Image task
class huggingface_hub.ImageToImageParameters
< source >( guidance_scale: typing.Optional[float] = None negative_prompt: typing.Optional[str] = None num_inference_steps: typing.Optional[int] = None prompt: typing.Optional[str] = None target_size: typing.Optional[huggingface_hub.inference._generated.types.image_to_image.ImageToImageTargetSize] = None )
Additional inference parameters for Image To Image
The size in pixels of the output image. This parameter is only supported by some providers and for specific models. It will be ignored when unsupported.
image_to_text
class huggingface_hub.ImageToTextGenerationParameters
< source >( do_sample: typing.Optional[bool] = None early_stopping: typing.Union[bool, ForwardRef('ImageToTextEarlyStoppingEnum'), NoneType] = None epsilon_cutoff: typing.Optional[float] = None eta_cutoff: typing.Optional[float] = None max_length: typing.Optional[int] = None max_new_tokens: typing.Optional[int] = None min_length: typing.Optional[int] = None min_new_tokens: typing.Optional[int] = None num_beam_groups: typing.Optional[int] = None num_beams: typing.Optional[int] = None penalty_alpha: typing.Optional[float] = None temperature: typing.Optional[float] = None top_k: typing.Optional[int] = None top_p: typing.Optional[float] = None typical_p: typing.Optional[float] = None use_cache: typing.Optional[bool] = None )
Parametrization of the text generation process
class huggingface_hub.ImageToTextInput
< source >( inputs: typing.Any parameters: typing.Optional[huggingface_hub.inference._generated.types.image_to_text.ImageToTextParameters] = None )
Inputs for Image To Text inference
class huggingface_hub.ImageToTextOutput
< source >( generated_text: typing.Any image_to_text_output_generated_text: typing.Optional[str] = None )
Outputs of inference for the Image To Text task
class huggingface_hub.ImageToTextParameters
< source >( generation_parameters: typing.Optional[huggingface_hub.inference._generated.types.image_to_text.ImageToTextGenerationParameters] = None max_new_tokens: typing.Optional[int] = None )
Additional inference parameters for Image To Text
image_to_video
class huggingface_hub.ImageToVideoInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.image_to_video.ImageToVideoParameters] = None )
Inputs for Image To Video inference
Outputs of inference for the Image To Video task
class huggingface_hub.ImageToVideoParameters
< source >( guidance_scale: typing.Optional[float] = None negative_prompt: typing.Optional[str] = None num_frames: typing.Optional[float] = None num_inference_steps: typing.Optional[int] = None prompt: typing.Optional[str] = None seed: typing.Optional[int] = None target_size: typing.Optional[huggingface_hub.inference._generated.types.image_to_video.ImageToVideoTargetSize] = None )
Additional inference parameters for Image To Video
The size in pixel of the output video frames.
object_detection
class huggingface_hub.ObjectDetectionBoundingBox
< source >( xmax: int xmin: int ymax: int ymin: int )
The predicted bounding box. Coordinates are relative to the top left corner of the input image.
class huggingface_hub.ObjectDetectionInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.object_detection.ObjectDetectionParameters] = None )
Inputs for Object Detection inference
class huggingface_hub.ObjectDetectionOutputElement
< source >( box: ObjectDetectionBoundingBox label: str score: float )
Outputs of inference for the Object Detection task
class huggingface_hub.ObjectDetectionParameters
< source >( threshold: typing.Optional[float] = None )
Additional inference parameters for Object Detection
question_answering
class huggingface_hub.QuestionAnsweringInput
< source >( inputs: QuestionAnsweringInputData parameters: typing.Optional[huggingface_hub.inference._generated.types.question_answering.QuestionAnsweringParameters] = None )
Inputs for Question Answering inference
One (context, question) pair to answer
class huggingface_hub.QuestionAnsweringOutputElement
< source >( answer: str end: int score: float start: int )
Outputs of inference for the Question Answering task
class huggingface_hub.QuestionAnsweringParameters
< source >( align_to_words: typing.Optional[bool] = None doc_stride: typing.Optional[int] = None handle_impossible_answer: typing.Optional[bool] = None max_answer_len: typing.Optional[int] = None max_question_len: typing.Optional[int] = None max_seq_len: typing.Optional[int] = None top_k: typing.Optional[int] = None )
Additional inference parameters for Question Answering
sentence_similarity
class huggingface_hub.SentenceSimilarityInput
< source >( inputs: SentenceSimilarityInputData parameters: typing.Optional[dict[str, typing.Any]] = None )
Inputs for Sentence similarity inference
class huggingface_hub.SentenceSimilarityInputData
< source >( sentences: list source_sentence: str )
summarization
class huggingface_hub.SummarizationInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.summarization.SummarizationParameters] = None )
Inputs for Summarization inference
Outputs of inference for the Summarization task
class huggingface_hub.SummarizationParameters
< source >( clean_up_tokenization_spaces: typing.Optional[bool] = None generate_parameters: typing.Optional[dict[str, typing.Any]] = None truncation: typing.Optional[ForwardRef('SummarizationTruncationStrategy')] = None )
Additional inference parameters for summarization.
table_question_answering
class huggingface_hub.TableQuestionAnsweringInput
< source >( inputs: TableQuestionAnsweringInputData parameters: typing.Optional[huggingface_hub.inference._generated.types.table_question_answering.TableQuestionAnsweringParameters] = None )
Inputs for Table Question Answering inference
One (table, question) pair to answer
class huggingface_hub.TableQuestionAnsweringOutputElement
< source >( answer: str cells: list coordinates: list aggregator: typing.Optional[str] = None )
Outputs of inference for the Table Question Answering task
class huggingface_hub.TableQuestionAnsweringParameters
< source >( padding: typing.Optional[ForwardRef('Padding')] = None sequential: typing.Optional[bool] = None truncation: typing.Optional[bool] = None )
Additional inference parameters for Table Question Answering
text2text_generation
class huggingface_hub.Text2TextGenerationInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.text2text_generation.Text2TextGenerationParameters] = None )
Inputs for Text2text Generation inference
class huggingface_hub.Text2TextGenerationOutput
< source >( generated_text: typing.Any text2_text_generation_output_generated_text: typing.Optional[str] = None )
Outputs of inference for the Text2text Generation task
class huggingface_hub.Text2TextGenerationParameters
< source >( clean_up_tokenization_spaces: typing.Optional[bool] = None generate_parameters: typing.Optional[dict[str, typing.Any]] = None truncation: typing.Optional[ForwardRef('Text2TextGenerationTruncationStrategy')] = None )
Additional inference parameters for Text2text Generation
text_classification
class huggingface_hub.TextClassificationInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.text_classification.TextClassificationParameters] = None )
Inputs for Text Classification inference
Outputs of inference for the Text Classification task
class huggingface_hub.TextClassificationParameters
< source >( function_to_apply: typing.Optional[ForwardRef('TextClassificationOutputTransform')] = None top_k: typing.Optional[int] = None )
Additional inference parameters for Text Classification
text_generation
class huggingface_hub.TextGenerationInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.text_generation.TextGenerationInputGenerateParameters] = None stream: typing.Optional[bool] = None )
Text Generation Input. Auto-generated from TGI specs. For more details, check out https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts.
class huggingface_hub.TextGenerationInputGenerateParameters
< source >( adapter_id: typing.Optional[str] = None best_of: typing.Optional[int] = None decoder_input_details: typing.Optional[bool] = None details: typing.Optional[bool] = None do_sample: typing.Optional[bool] = None frequency_penalty: typing.Optional[float] = None grammar: typing.Optional[huggingface_hub.inference._generated.types.text_generation.TextGenerationInputGrammarType] = None max_new_tokens: typing.Optional[int] = None repetition_penalty: typing.Optional[float] = None return_full_text: typing.Optional[bool] = None seed: typing.Optional[int] = None stop: typing.Optional[list[str]] = None temperature: typing.Optional[float] = None top_k: typing.Optional[int] = None top_n_tokens: typing.Optional[int] = None top_p: typing.Optional[float] = None truncate: typing.Optional[int] = None typical_p: typing.Optional[float] = None watermark: typing.Optional[bool] = None )
class huggingface_hub.TextGenerationInputGrammarType
< source >( type: TypeEnum value: typing.Any )
class huggingface_hub.TextGenerationOutput
< source >( generated_text: str details: typing.Optional[huggingface_hub.inference._generated.types.text_generation.TextGenerationOutputDetails] = None )
Text Generation Output. Auto-generated from TGI specs. For more details, check out https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts.
class huggingface_hub.TextGenerationOutputBestOfSequence
< source >( finish_reason: TextGenerationOutputFinishReason generated_text: str generated_tokens: int prefill: list tokens: list seed: typing.Optional[int] = None top_tokens: typing.Optional[list[list[huggingface_hub.inference._generated.types.text_generation.TextGenerationOutputToken]]] = None )
class huggingface_hub.TextGenerationOutputDetails
< source >( finish_reason: TextGenerationOutputFinishReason generated_tokens: int prefill: list tokens: list best_of_sequences: typing.Optional[list[huggingface_hub.inference._generated.types.text_generation.TextGenerationOutputBestOfSequence]] = None seed: typing.Optional[int] = None top_tokens: typing.Optional[list[list[huggingface_hub.inference._generated.types.text_generation.TextGenerationOutputToken]]] = None )
class huggingface_hub.TextGenerationOutputPrefillToken
< source >( id: int logprob: float text: str )
class huggingface_hub.TextGenerationOutputToken
< source >( id: int logprob: float special: bool text: str )
class huggingface_hub.TextGenerationStreamOutput
< source >( index: int token: TextGenerationStreamOutputToken details: typing.Optional[huggingface_hub.inference._generated.types.text_generation.TextGenerationStreamOutputStreamDetails] = None generated_text: typing.Optional[str] = None top_tokens: typing.Optional[list[huggingface_hub.inference._generated.types.text_generation.TextGenerationStreamOutputToken]] = None )
Text Generation Stream Output. Auto-generated from TGI specs. For more details, check out https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts.
class huggingface_hub.TextGenerationStreamOutputStreamDetails
< source >( finish_reason: TextGenerationOutputFinishReason generated_tokens: int input_length: int seed: typing.Optional[int] = None )
class huggingface_hub.TextGenerationStreamOutputToken
< source >( id: int logprob: float special: bool text: str )
text_to_audio
class huggingface_hub.TextToAudioGenerationParameters
< source >( do_sample: typing.Optional[bool] = None early_stopping: typing.Union[bool, ForwardRef('TextToAudioEarlyStoppingEnum'), NoneType] = None epsilon_cutoff: typing.Optional[float] = None eta_cutoff: typing.Optional[float] = None max_length: typing.Optional[int] = None max_new_tokens: typing.Optional[int] = None min_length: typing.Optional[int] = None min_new_tokens: typing.Optional[int] = None num_beam_groups: typing.Optional[int] = None num_beams: typing.Optional[int] = None penalty_alpha: typing.Optional[float] = None temperature: typing.Optional[float] = None top_k: typing.Optional[int] = None top_p: typing.Optional[float] = None typical_p: typing.Optional[float] = None use_cache: typing.Optional[bool] = None )
Parametrization of the text generation process
class huggingface_hub.TextToAudioInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.text_to_audio.TextToAudioParameters] = None )
Inputs for Text To Audio inference
Outputs of inference for the Text To Audio task
class huggingface_hub.TextToAudioParameters
< source >( generation_parameters: typing.Optional[huggingface_hub.inference._generated.types.text_to_audio.TextToAudioGenerationParameters] = None )
Additional inference parameters for Text To Audio
text_to_image
class huggingface_hub.TextToImageInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.text_to_image.TextToImageParameters] = None )
Inputs for Text To Image inference
Outputs of inference for the Text To Image task
class huggingface_hub.TextToImageParameters
< source >( guidance_scale: typing.Optional[float] = None height: typing.Optional[int] = None negative_prompt: typing.Optional[str] = None num_inference_steps: typing.Optional[int] = None scheduler: typing.Optional[str] = None seed: typing.Optional[int] = None width: typing.Optional[int] = None )
Additional inference parameters for Text To Image
text_to_speech
class huggingface_hub.TextToSpeechGenerationParameters
< source >( do_sample: typing.Optional[bool] = None early_stopping: typing.Union[bool, ForwardRef('TextToSpeechEarlyStoppingEnum'), NoneType] = None epsilon_cutoff: typing.Optional[float] = None eta_cutoff: typing.Optional[float] = None max_length: typing.Optional[int] = None max_new_tokens: typing.Optional[int] = None min_length: typing.Optional[int] = None min_new_tokens: typing.Optional[int] = None num_beam_groups: typing.Optional[int] = None num_beams: typing.Optional[int] = None penalty_alpha: typing.Optional[float] = None temperature: typing.Optional[float] = None top_k: typing.Optional[int] = None top_p: typing.Optional[float] = None typical_p: typing.Optional[float] = None use_cache: typing.Optional[bool] = None )
Parametrization of the text generation process
class huggingface_hub.TextToSpeechInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.text_to_speech.TextToSpeechParameters] = None )
Inputs for Text To Speech inference
class huggingface_hub.TextToSpeechOutput
< source >( audio: typing.Any sampling_rate: typing.Optional[float] = None )
Outputs of inference for the Text To Speech task
class huggingface_hub.TextToSpeechParameters
< source >( generation_parameters: typing.Optional[huggingface_hub.inference._generated.types.text_to_speech.TextToSpeechGenerationParameters] = None )
Additional inference parameters for Text To Speech
text_to_video
class huggingface_hub.TextToVideoInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.text_to_video.TextToVideoParameters] = None )
Inputs for Text To Video inference
Outputs of inference for the Text To Video task
class huggingface_hub.TextToVideoParameters
< source >( guidance_scale: typing.Optional[float] = None negative_prompt: typing.Optional[list[str]] = None num_frames: typing.Optional[float] = None num_inference_steps: typing.Optional[int] = None seed: typing.Optional[int] = None )
Additional inference parameters for Text To Video
token_classification
class huggingface_hub.TokenClassificationInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.token_classification.TokenClassificationParameters] = None )
Inputs for Token Classification inference
class huggingface_hub.TokenClassificationOutputElement
< source >( end: int score: float start: int word: str entity: typing.Optional[str] = None entity_group: typing.Optional[str] = None )
Outputs of inference for the Token Classification task
class huggingface_hub.TokenClassificationParameters
< source >( aggregation_strategy: typing.Optional[ForwardRef('TokenClassificationAggregationStrategy')] = None ignore_labels: typing.Optional[list[str]] = None stride: typing.Optional[int] = None )
Additional inference parameters for Token Classification
translation
class huggingface_hub.TranslationInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.translation.TranslationParameters] = None )
Inputs for Translation inference
Outputs of inference for the Translation task
class huggingface_hub.TranslationParameters
< source >( clean_up_tokenization_spaces: typing.Optional[bool] = None generate_parameters: typing.Optional[dict[str, typing.Any]] = None src_lang: typing.Optional[str] = None tgt_lang: typing.Optional[str] = None truncation: typing.Optional[ForwardRef('TranslationTruncationStrategy')] = None )
Additional inference parameters for Translation
video_classification
class huggingface_hub.VideoClassificationInput
< source >( inputs: typing.Any parameters: typing.Optional[huggingface_hub.inference._generated.types.video_classification.VideoClassificationParameters] = None )
Inputs for Video Classification inference
Outputs of inference for the Video Classification task
class huggingface_hub.VideoClassificationParameters
< source >( frame_sampling_rate: typing.Optional[int] = None function_to_apply: typing.Optional[ForwardRef('VideoClassificationOutputTransform')] = None num_frames: typing.Optional[int] = None top_k: typing.Optional[int] = None )
Additional inference parameters for Video Classification
visual_question_answering
class huggingface_hub.VisualQuestionAnsweringInput
< source >( inputs: VisualQuestionAnsweringInputData parameters: typing.Optional[huggingface_hub.inference._generated.types.visual_question_answering.VisualQuestionAnsweringParameters] = None )
Inputs for Visual Question Answering inference
class huggingface_hub.VisualQuestionAnsweringInputData
< source >( image: typing.Any question: str )
One (image, question) pair to answer
class huggingface_hub.VisualQuestionAnsweringOutputElement
< source >( score: float answer: typing.Optional[str] = None )
Outputs of inference for the Visual Question Answering task
class huggingface_hub.VisualQuestionAnsweringParameters
< source >( top_k: typing.Optional[int] = None )
Additional inference parameters for Visual Question Answering
zero_shot_classification
class huggingface_hub.ZeroShotClassificationInput
< source >( inputs: str parameters: ZeroShotClassificationParameters )
Inputs for Zero Shot Classification inference
Outputs of inference for the Zero Shot Classification task
class huggingface_hub.ZeroShotClassificationParameters
< source >( candidate_labels: list hypothesis_template: typing.Optional[str] = None multi_label: typing.Optional[bool] = None )
Additional inference parameters for Zero Shot Classification
zero_shot_image_classification
class huggingface_hub.ZeroShotImageClassificationInput
< source >( inputs: str parameters: ZeroShotImageClassificationParameters )
Inputs for Zero Shot Image Classification inference
class huggingface_hub.ZeroShotImageClassificationOutputElement
< source >( label: str score: float )
Outputs of inference for the Zero Shot Image Classification task
class huggingface_hub.ZeroShotImageClassificationParameters
< source >( candidate_labels: list hypothesis_template: typing.Optional[str] = None )
Additional inference parameters for Zero Shot Image Classification
zero_shot_object_detection
class huggingface_hub.ZeroShotObjectDetectionBoundingBox
< source >( xmax: int xmin: int ymax: int ymin: int )
The predicted bounding box. Coordinates are relative to the top left corner of the input image.
class huggingface_hub.ZeroShotObjectDetectionInput
< source >( inputs: str parameters: ZeroShotObjectDetectionParameters )
Inputs for Zero Shot Object Detection inference
class huggingface_hub.ZeroShotObjectDetectionOutputElement
< source >( box: ZeroShotObjectDetectionBoundingBox label: str score: float )
Outputs of inference for the Zero Shot Object Detection task
Additional inference parameters for Zero Shot Object Detection