Latent Consistency Models
Latent Consistency Models (LCMs) were proposed in Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference by Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao.
The abstract of the paper is as follows:
Latent Diffusion models (LDMs) have achieved remarkable results in synthesizing high-resolution images. However, the iterative sampling process is computationally intensive and leads to slow generation. Inspired by Consistency Models (song et al.), we propose Latent Consistency Models (LCMs), enabling swift inference with minimal steps on any pre-trained LDMs, including Stable Diffusion (rombach et al). Viewing the guided reverse diffusion process as solving an augmented probability flow ODE (PF-ODE), LCMs are designed to directly predict the solution of such ODE in latent space, mitigating the need for numerous iterations and allowing rapid, high-fidelity sampling. Efficiently distilled from pre-trained classifier-free guided diffusion models, a high-quality 768 x 768 2~4-step LCM takes only 32 A100 GPU hours for training. Furthermore, we introduce Latent Consistency Fine-tuning (LCF), a novel method that is tailored for fine-tuning LCMs on customized image datasets. Evaluation on the LAION-5B-Aesthetics dataset demonstrates that LCMs achieve state-of-the-art text-to-image generation performance with few-step inference. Project Page: this https URL.
A demo for the SimianLuo/LCM_Dreamshaper_v7 checkpoint can be found here.
The pipelines were contributed by luosiallen, nagolinc, and dg845.
LatentConsistencyModelPipeline
class diffusers.LatentConsistencyModelPipeline
< source >( vae: AutoencoderKL text_encoder: CLIPTextModel tokenizer: CLIPTokenizer unet: UNet2DConditionModel scheduler: LCMScheduler safety_checker: StableDiffusionSafetyChecker feature_extractor: CLIPImageProcessor requires_safety_checker: bool = True )
Parameters
- vae (AutoencoderKL) — Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
- text_encoder (CLIPTextModel) — Frozen text-encoder (clip-vit-large-patch14).
- tokenizer (CLIPTokenizer) —
A
CLIPTokenizer
to tokenize text. - unet (UNet2DConditionModel) —
A
UNet2DConditionModel
to denoise the encoded image latents. - scheduler (SchedulerMixin) —
A scheduler to be used in combination with
unet
to denoise the encoded image latents. Currently only supports LCMScheduler. - safety_checker (
StableDiffusionSafetyChecker
) — Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the model card for more details about a model’s potential harms. - feature_extractor (CLIPImageProcessor) —
A
CLIPImageProcessor
to extract features from generated images; used as inputs to thesafety_checker
. - requires_safety_checker (
bool
, optional, defaults toTrue
) — Whether the pipeline requires a safety checker component.
Pipeline for text-to-image generation using a latent consistency model.
This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).
The pipeline also inherits the following loading methods:
- load_textual_inversion() for loading textual inversion embeddings
- load_lora_weights() for loading LoRA weights
- save_lora_weights() for saving LoRA weights
- from_single_file() for loading
.ckpt
files
__call__
< source >( prompt: typing.Union[str, typing.List[str]] = None height: typing.Optional[int] = None width: typing.Optional[int] = None num_inference_steps: int = 4 original_inference_steps: int = None timesteps: typing.List[int] = None guidance_scale: float = 8.5 num_images_per_prompt: typing.Optional[int] = 1 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.FloatTensor] = None prompt_embeds: typing.Optional[torch.FloatTensor] = None output_type: typing.Optional[str] = 'pil' return_dict: bool = True cross_attention_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = None clip_skip: typing.Optional[int] = None callback_on_step_end: typing.Union[typing.Callable[[int, int, typing.Dict], NoneType], NoneType] = None callback_on_step_end_tensor_inputs: typing.List[str] = ['latents'] **kwargs ) → StableDiffusionPipelineOutput or tuple
Parameters
- prompt (
str
orList[str]
, optional) — The prompt or prompts to guide image generation. If not defined, you need to passprompt_embeds
. - height (
int
, optional, defaults toself.unet.config.sample_size * self.vae_scale_factor
) — The height in pixels of the generated image. - width (
int
, optional, defaults toself.unet.config.sample_size * self.vae_scale_factor
) — The width in pixels of the generated image. - num_inference_steps (
int
, optional, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. - original_inference_steps (
int
, optional) — The original number of inference steps use to generate a linearly-spaced timestep schedule, from which we will drawnum_inference_steps
evenly spaced timesteps from as our final timestep schedule, following the Skipping-Step method in the paper (see Section 4.3). If not set this will default to the scheduler’soriginal_inference_steps
attribute. - timesteps (
List[int]
, optional) — Custom timesteps to use for the denoising process. If not defined, equal spacednum_inference_steps
timesteps on the original LCM training/distillation timestep schedule are used. Must be in descending order. - guidance_scale (
float
, optional, defaults to 7.5) — A higher guidance scale value encourages the model to generate images closely linked to the textprompt
at the expense of lower image quality. Guidance scale is enabled whenguidance_scale > 1
. Note that the original latent consistency models paper uses a different CFG formulation where the guidance scales are decreased by 1 (so in the paper formulation CFG is enabled whenguidance_scale > 0
). - num_images_per_prompt (
int
, optional, defaults to 1) — The number of images to generate per prompt. - generator (
torch.Generator
orList[torch.Generator]
, optional) — Atorch.Generator
to make generation deterministic. - latents (
torch.FloatTensor
, optional) — Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied randomgenerator
. - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from theprompt
input argument. - output_type (
str
, optional, defaults to"pil"
) — The output format of the generated image. Choose betweenPIL.Image
ornp.array
. - return_dict (
bool
, optional, defaults toTrue
) — Whether or not to return a StableDiffusionPipelineOutput instead of a plain tuple. - cross_attention_kwargs (
dict
, optional) — A kwargs dictionary that if specified is passed along to theAttentionProcessor
as defined inself.processor
. - clip_skip (
int
, optional) — Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. - callback_on_step_end (
Callable
, optional) — A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments:callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)
.callback_kwargs
will include a list of all tensors as specified bycallback_on_step_end_tensor_inputs
. - callback_on_step_end_tensor_inputs (
List
, optional) — The list of tensor inputs for thecallback_on_step_end
function. The tensors specified in the list will be passed ascallback_kwargs
argument. You will only be able to include variables listed in the._callback_tensor_inputs
attribute of your pipeline class.
Returns
StableDiffusionPipelineOutput or tuple
If return_dict
is True
, StableDiffusionPipelineOutput is returned,
otherwise a tuple
is returned where the first element is a list with the generated images and the
second element is a list of bool
s indicating whether the corresponding generated image contains
“not-safe-for-work” (nsfw) content.
The call function to the pipeline for generation.
Examples:
>>> from diffusers import DiffusionPipeline
>>> import torch
>>> pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7")
>>> # To save GPU memory, torch.float16 can be used, but it may compromise image quality.
>>> pipe.to(torch_device="cuda", torch_dtype=torch.float32)
>>> prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
>>> # Can be set to 1~50 steps. LCM support fast inference even <= 4 steps. Recommend: 1~8 steps.
>>> num_inference_steps = 4
>>> images = pipe(prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=8.0).images
>>> images[0].save("image.png")
enable_freeu
< source >( s1: float s2: float b1: float b2: float )
Parameters
- s1 (
float
) — Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to mitigate “oversmoothing effect” in the enhanced denoising process. - s2 (
float
) — Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to mitigate “oversmoothing effect” in the enhanced denoising process. - b1 (
float
) — Scaling factor for stage 1 to amplify the contributions of backbone features. - b2 (
float
) — Scaling factor for stage 2 to amplify the contributions of backbone features.
Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
The suffixes after the scaling factors represent the stages where they are being applied.
Please refer to the official repository for combinations of the values that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
Disables the FreeU mechanism if enabled.
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
Disable sliced VAE decoding. If enable_vae_slicing
was previously enabled, this method will go back to
computing decoding in one step.
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images.
Disable tiled VAE decoding. If enable_vae_tiling
was previously enabled, this method will go back to
computing decoding in one step.
encode_prompt
< source >( prompt device num_images_per_prompt do_classifier_free_guidance negative_prompt = None prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_prompt_embeds: typing.Optional[torch.FloatTensor] = None lora_scale: typing.Optional[float] = None clip_skip: typing.Optional[int] = None )
Parameters
- prompt (
str
orList[str]
, optional) — prompt to be encoded device — (torch.device
): torch device - num_images_per_prompt (
int
) — number of images that should be generated per prompt - do_classifier_free_guidance (
bool
) — whether to use classifier free guidance or not - negative_prompt (
str
orList[str]
, optional) — The prompt or prompts not to guide the image generation. If not defined, one has to passnegative_prompt_embeds
instead. Ignored when not using guidance (i.e., ignored ifguidance_scale
is less than1
). - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. - negative_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated fromnegative_prompt
input argument. - lora_scale (
float
, optional) — A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. - clip_skip (
int
, optional) — Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.
Encodes the prompt into text encoder hidden states.
get_guidance_scale_embedding
< source >( w embedding_dim = 512 dtype = torch.float32 ) → torch.FloatTensor
Parameters
- timesteps (
torch.Tensor
) — generate embedding vectors at these timesteps - embedding_dim (
int
, optional, defaults to 512) — dimension of the embeddings to generate dtype — data type of the generated embeddings
Returns
torch.FloatTensor
Embedding vectors with shape (len(timesteps), embedding_dim)
LatentConsistencyModelImg2ImgPipeline
class diffusers.LatentConsistencyModelImg2ImgPipeline
< source >( vae: AutoencoderKL text_encoder: CLIPTextModel tokenizer: CLIPTokenizer unet: UNet2DConditionModel scheduler: LCMScheduler safety_checker: StableDiffusionSafetyChecker feature_extractor: CLIPImageProcessor requires_safety_checker: bool = True )
Parameters
- vae (AutoencoderKL) — Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
- text_encoder (CLIPTextModel) — Frozen text-encoder (clip-vit-large-patch14).
- tokenizer (CLIPTokenizer) —
A
CLIPTokenizer
to tokenize text. - unet (UNet2DConditionModel) —
A
UNet2DConditionModel
to denoise the encoded image latents. - scheduler (SchedulerMixin) —
A scheduler to be used in combination with
unet
to denoise the encoded image latents. Currently only supports LCMScheduler. - safety_checker (
StableDiffusionSafetyChecker
) — Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the model card for more details about a model’s potential harms. - feature_extractor (CLIPImageProcessor) —
A
CLIPImageProcessor
to extract features from generated images; used as inputs to thesafety_checker
. - requires_safety_checker (
bool
, optional, defaults toTrue
) — Whether the pipeline requires a safety checker component.
Pipeline for image-to-image generation using a latent consistency model.
This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).
The pipeline also inherits the following loading methods:
- load_textual_inversion() for loading textual inversion embeddings
- load_lora_weights() for loading LoRA weights
- save_lora_weights() for saving LoRA weights
- from_single_file() for loading
.ckpt
files
__call__
< source >( prompt: typing.Union[str, typing.List[str]] = None image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.FloatTensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.FloatTensor]] = None num_inference_steps: int = 4 strength: float = 0.8 original_inference_steps: int = None timesteps: typing.List[int] = None guidance_scale: float = 8.5 num_images_per_prompt: typing.Optional[int] = 1 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.FloatTensor] = None prompt_embeds: typing.Optional[torch.FloatTensor] = None output_type: typing.Optional[str] = 'pil' return_dict: bool = True cross_attention_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = None clip_skip: typing.Optional[int] = None callback_on_step_end: typing.Union[typing.Callable[[int, int, typing.Dict], NoneType], NoneType] = None callback_on_step_end_tensor_inputs: typing.List[str] = ['latents'] **kwargs ) → StableDiffusionPipelineOutput or tuple
Parameters
- prompt (
str
orList[str]
, optional) — The prompt or prompts to guide image generation. If not defined, you need to passprompt_embeds
. - height (
int
, optional, defaults toself.unet.config.sample_size * self.vae_scale_factor
) — The height in pixels of the generated image. - width (
int
, optional, defaults toself.unet.config.sample_size * self.vae_scale_factor
) — The width in pixels of the generated image. - num_inference_steps (
int
, optional, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. - original_inference_steps (
int
, optional) — The original number of inference steps use to generate a linearly-spaced timestep schedule, from which we will drawnum_inference_steps
evenly spaced timesteps from as our final timestep schedule, following the Skipping-Step method in the paper (see Section 4.3). If not set this will default to the scheduler’soriginal_inference_steps
attribute. - timesteps (
List[int]
, optional) — Custom timesteps to use for the denoising process. If not defined, equal spacednum_inference_steps
timesteps on the original LCM training/distillation timestep schedule are used. Must be in descending order. - guidance_scale (
float
, optional, defaults to 7.5) — A higher guidance scale value encourages the model to generate images closely linked to the textprompt
at the expense of lower image quality. Guidance scale is enabled whenguidance_scale > 1
. Note that the original latent consistency models paper uses a different CFG formulation where the guidance scales are decreased by 1 (so in the paper formulation CFG is enabled whenguidance_scale > 0
). - num_images_per_prompt (
int
, optional, defaults to 1) — The number of images to generate per prompt. - generator (
torch.Generator
orList[torch.Generator]
, optional) — Atorch.Generator
to make generation deterministic. - latents (
torch.FloatTensor
, optional) — Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied randomgenerator
. - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from theprompt
input argument. - output_type (
str
, optional, defaults to"pil"
) — The output format of the generated image. Choose betweenPIL.Image
ornp.array
. - return_dict (
bool
, optional, defaults toTrue
) — Whether or not to return a StableDiffusionPipelineOutput instead of a plain tuple. - cross_attention_kwargs (
dict
, optional) — A kwargs dictionary that if specified is passed along to theAttentionProcessor
as defined inself.processor
. - clip_skip (
int
, optional) — Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. - callback_on_step_end (
Callable
, optional) — A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments:callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)
.callback_kwargs
will include a list of all tensors as specified bycallback_on_step_end_tensor_inputs
. - callback_on_step_end_tensor_inputs (
List
, optional) — The list of tensor inputs for thecallback_on_step_end
function. The tensors specified in the list will be passed ascallback_kwargs
argument. You will only be able to include variables listed in the._callback_tensor_inputs
attribute of your pipeline class.
Returns
StableDiffusionPipelineOutput or tuple
If return_dict
is True
, StableDiffusionPipelineOutput is returned,
otherwise a tuple
is returned where the first element is a list with the generated images and the
second element is a list of bool
s indicating whether the corresponding generated image contains
“not-safe-for-work” (nsfw) content.
The call function to the pipeline for generation.
Examples:
>>> from diffusers import AutoPipelineForImage2Image
>>> import torch
>>> import PIL
>>> pipe = AutoPipelineForImage2Image.from_pretrained("SimianLuo/LCM_Dreamshaper_v7")
>>> # To save GPU memory, torch.float16 can be used, but it may compromise image quality.
>>> pipe.to(torch_device="cuda", torch_dtype=torch.float32)
>>> prompt = "High altitude snowy mountains"
>>> image = PIL.Image.open("./snowy_mountains.png")
>>> # Can be set to 1~50 steps. LCM support fast inference even <= 4 steps. Recommend: 1~8 steps.
>>> num_inference_steps = 4
>>> images = pipe(
... prompt=prompt, image=image, num_inference_steps=num_inference_steps, guidance_scale=8.0
... ).images
>>> images[0].save("image.png")
enable_freeu
< source >( s1: float s2: float b1: float b2: float )
Parameters
- s1 (
float
) — Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to mitigate “oversmoothing effect” in the enhanced denoising process. - s2 (
float
) — Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to mitigate “oversmoothing effect” in the enhanced denoising process. - b1 (
float
) — Scaling factor for stage 1 to amplify the contributions of backbone features. - b2 (
float
) — Scaling factor for stage 2 to amplify the contributions of backbone features.
Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
The suffixes after the scaling factors represent the stages where they are being applied.
Please refer to the official repository for combinations of the values that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
Disables the FreeU mechanism if enabled.
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
Disable sliced VAE decoding. If enable_vae_slicing
was previously enabled, this method will go back to
computing decoding in one step.
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images.
Disable tiled VAE decoding. If enable_vae_tiling
was previously enabled, this method will go back to
computing decoding in one step.
encode_prompt
< source >( prompt device num_images_per_prompt do_classifier_free_guidance negative_prompt = None prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_prompt_embeds: typing.Optional[torch.FloatTensor] = None lora_scale: typing.Optional[float] = None clip_skip: typing.Optional[int] = None )
Parameters
- prompt (
str
orList[str]
, optional) — prompt to be encoded device — (torch.device
): torch device - num_images_per_prompt (
int
) — number of images that should be generated per prompt - do_classifier_free_guidance (
bool
) — whether to use classifier free guidance or not - negative_prompt (
str
orList[str]
, optional) — The prompt or prompts not to guide the image generation. If not defined, one has to passnegative_prompt_embeds
instead. Ignored when not using guidance (i.e., ignored ifguidance_scale
is less than1
). - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. - negative_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated fromnegative_prompt
input argument. - lora_scale (
float
, optional) — A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. - clip_skip (
int
, optional) — Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.
Encodes the prompt into text encoder hidden states.
get_guidance_scale_embedding
< source >( w embedding_dim = 512 dtype = torch.float32 ) → torch.FloatTensor
Parameters
- timesteps (
torch.Tensor
) — generate embedding vectors at these timesteps - embedding_dim (
int
, optional, defaults to 512) — dimension of the embeddings to generate dtype — data type of the generated embeddings
Returns
torch.FloatTensor
Embedding vectors with shape (len(timesteps), embedding_dim)
StableDiffusionPipelineOutput
class diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput
< source >( images: typing.Union[typing.List[PIL.Image.Image], numpy.ndarray] nsfw_content_detected: typing.Optional[typing.List[bool]] )
Parameters
- images (
List[PIL.Image.Image]
ornp.ndarray
) — List of denoised PIL images of lengthbatch_size
or NumPy array of shape(batch_size, height, width, num_channels)
. - nsfw_content_detected (
List[bool]
) — List indicating whether the corresponding generated image contains “not-safe-for-work” (nsfw) content orNone
if safety checking could not be performed.
Output class for Stable Diffusion pipelines.