20230826022800
This model is a fine-tuned version of bert-large-cased on the super_glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.4898
- Accuracy: 0.75
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.01
- train_batch_size: 16
- eval_batch_size: 8
- seed: 11
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 80.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 25 | 0.5778 | 0.38 |
No log | 2.0 | 50 | 0.5810 | 0.66 |
No log | 3.0 | 75 | 0.6271 | 0.65 |
No log | 4.0 | 100 | 0.5772 | 0.64 |
No log | 5.0 | 125 | 0.5290 | 0.62 |
No log | 6.0 | 150 | 0.5352 | 0.62 |
No log | 7.0 | 175 | 0.5322 | 0.61 |
No log | 8.0 | 200 | 0.5976 | 0.64 |
No log | 9.0 | 225 | 0.5290 | 0.61 |
No log | 10.0 | 250 | 0.5700 | 0.66 |
No log | 11.0 | 275 | 0.5132 | 0.66 |
No log | 12.0 | 300 | 0.5155 | 0.64 |
No log | 13.0 | 325 | 0.5049 | 0.67 |
No log | 14.0 | 350 | 0.5078 | 0.67 |
No log | 15.0 | 375 | 0.4821 | 0.68 |
No log | 16.0 | 400 | 0.5371 | 0.7 |
No log | 17.0 | 425 | 0.5407 | 0.69 |
No log | 18.0 | 450 | 0.6441 | 0.71 |
No log | 19.0 | 475 | 0.5787 | 0.7 |
0.6402 | 20.0 | 500 | 0.5646 | 0.68 |
0.6402 | 21.0 | 525 | 0.5553 | 0.71 |
0.6402 | 22.0 | 550 | 0.6137 | 0.72 |
0.6402 | 23.0 | 575 | 0.4948 | 0.71 |
0.6402 | 24.0 | 600 | 0.5510 | 0.72 |
0.6402 | 25.0 | 625 | 0.5985 | 0.7 |
0.6402 | 26.0 | 650 | 0.5660 | 0.71 |
0.6402 | 27.0 | 675 | 0.5232 | 0.71 |
0.6402 | 28.0 | 700 | 0.5381 | 0.71 |
0.6402 | 29.0 | 725 | 0.5234 | 0.71 |
0.6402 | 30.0 | 750 | 0.6145 | 0.71 |
0.6402 | 31.0 | 775 | 0.5482 | 0.73 |
0.6402 | 32.0 | 800 | 0.5246 | 0.72 |
0.6402 | 33.0 | 825 | 0.5258 | 0.71 |
0.6402 | 34.0 | 850 | 0.5278 | 0.72 |
0.6402 | 35.0 | 875 | 0.5245 | 0.72 |
0.6402 | 36.0 | 900 | 0.5073 | 0.72 |
0.6402 | 37.0 | 925 | 0.4983 | 0.72 |
0.6402 | 38.0 | 950 | 0.5077 | 0.73 |
0.6402 | 39.0 | 975 | 0.5263 | 0.73 |
0.3719 | 40.0 | 1000 | 0.5096 | 0.73 |
0.3719 | 41.0 | 1025 | 0.5339 | 0.73 |
0.3719 | 42.0 | 1050 | 0.4964 | 0.75 |
0.3719 | 43.0 | 1075 | 0.4832 | 0.73 |
0.3719 | 44.0 | 1100 | 0.4940 | 0.73 |
0.3719 | 45.0 | 1125 | 0.4982 | 0.72 |
0.3719 | 46.0 | 1150 | 0.5449 | 0.73 |
0.3719 | 47.0 | 1175 | 0.5175 | 0.73 |
0.3719 | 48.0 | 1200 | 0.5208 | 0.74 |
0.3719 | 49.0 | 1225 | 0.5281 | 0.74 |
0.3719 | 50.0 | 1250 | 0.4940 | 0.76 |
0.3719 | 51.0 | 1275 | 0.5020 | 0.74 |
0.3719 | 52.0 | 1300 | 0.5010 | 0.74 |
0.3719 | 53.0 | 1325 | 0.4799 | 0.73 |
0.3719 | 54.0 | 1350 | 0.5206 | 0.74 |
0.3719 | 55.0 | 1375 | 0.5148 | 0.75 |
0.3719 | 56.0 | 1400 | 0.4815 | 0.74 |
0.3719 | 57.0 | 1425 | 0.4951 | 0.74 |
0.3719 | 58.0 | 1450 | 0.5077 | 0.74 |
0.3719 | 59.0 | 1475 | 0.5000 | 0.74 |
0.3121 | 60.0 | 1500 | 0.5124 | 0.75 |
0.3121 | 61.0 | 1525 | 0.4891 | 0.76 |
0.3121 | 62.0 | 1550 | 0.4994 | 0.75 |
0.3121 | 63.0 | 1575 | 0.4947 | 0.75 |
0.3121 | 64.0 | 1600 | 0.4833 | 0.74 |
0.3121 | 65.0 | 1625 | 0.5135 | 0.75 |
0.3121 | 66.0 | 1650 | 0.4803 | 0.75 |
0.3121 | 67.0 | 1675 | 0.5058 | 0.75 |
0.3121 | 68.0 | 1700 | 0.4840 | 0.75 |
0.3121 | 69.0 | 1725 | 0.5051 | 0.75 |
0.3121 | 70.0 | 1750 | 0.4883 | 0.74 |
0.3121 | 71.0 | 1775 | 0.4972 | 0.74 |
0.3121 | 72.0 | 1800 | 0.4789 | 0.74 |
0.3121 | 73.0 | 1825 | 0.4984 | 0.74 |
0.3121 | 74.0 | 1850 | 0.4913 | 0.74 |
0.3121 | 75.0 | 1875 | 0.4879 | 0.74 |
0.3121 | 76.0 | 1900 | 0.4902 | 0.74 |
0.3121 | 77.0 | 1925 | 0.4856 | 0.74 |
0.3121 | 78.0 | 1950 | 0.4893 | 0.74 |
0.3121 | 79.0 | 1975 | 0.4907 | 0.75 |
0.2906 | 80.0 | 2000 | 0.4898 | 0.75 |
Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 0