20230823013619

This model is a fine-tuned version of bert-large-cased on the super_glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0007
  • Accuracy: 0.4729

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 11
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 60.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 156 0.0076 0.5199
No log 2.0 312 0.0418 0.5343
No log 3.0 468 0.0044 0.5054
0.0669 4.0 624 0.0117 0.4693
0.0669 5.0 780 0.0333 0.4729
0.0669 6.0 936 0.0014 0.4693
0.0209 7.0 1092 0.0008 0.4729
0.0209 8.0 1248 0.0031 0.4729
0.0209 9.0 1404 0.0049 0.4982
0.0144 10.0 1560 0.0007 0.4729
0.0144 11.0 1716 0.0014 0.4693
0.0144 12.0 1872 0.0022 0.5054
0.0094 13.0 2028 0.0008 0.4729
0.0094 14.0 2184 0.0012 0.4729
0.0094 15.0 2340 0.0018 0.4729
0.0094 16.0 2496 0.0008 0.4729
0.0087 17.0 2652 0.0011 0.4729
0.0087 18.0 2808 0.0009 0.4729
0.0087 19.0 2964 0.0010 0.4729
0.0091 20.0 3120 0.0021 0.4585
0.0091 21.0 3276 0.0008 0.4729
0.0091 22.0 3432 0.0010 0.4729
0.0087 23.0 3588 0.0007 0.4729
0.0087 24.0 3744 0.0012 0.4765
0.0087 25.0 3900 0.0013 0.4729
0.0088 26.0 4056 0.0010 0.4910
0.0088 27.0 4212 0.0012 0.4765
0.0088 28.0 4368 0.0012 0.4729
0.0087 29.0 4524 0.0013 0.4910
0.0087 30.0 4680 0.0009 0.4729
0.0087 31.0 4836 0.0012 0.4729
0.0087 32.0 4992 0.0007 0.4729
0.0089 33.0 5148 0.0009 0.4729
0.0089 34.0 5304 0.0008 0.4729
0.0089 35.0 5460 0.0007 0.4729
0.0087 36.0 5616 0.0009 0.4729
0.0087 37.0 5772 0.0007 0.4801
0.0087 38.0 5928 0.0007 0.4729
0.0093 39.0 6084 0.0007 0.4729
0.0093 40.0 6240 0.0008 0.4729
0.0093 41.0 6396 0.0011 0.4729
0.0086 42.0 6552 0.0008 0.4729
0.0086 43.0 6708 0.0017 0.4729
0.0086 44.0 6864 0.0009 0.4729
0.0085 45.0 7020 0.0007 0.4729
0.0085 46.0 7176 0.0022 0.4729
0.0085 47.0 7332 0.0009 0.4729
0.0085 48.0 7488 0.0008 0.4729
0.0087 49.0 7644 0.0007 0.4729
0.0087 50.0 7800 0.0010 0.4729
0.0087 51.0 7956 0.0007 0.4729
0.0084 52.0 8112 0.0013 0.4729
0.0084 53.0 8268 0.0010 0.4729
0.0084 54.0 8424 0.0010 0.4729
0.0083 55.0 8580 0.0007 0.4729
0.0083 56.0 8736 0.0007 0.4729
0.0083 57.0 8892 0.0007 0.4729
0.0082 58.0 9048 0.0007 0.4729
0.0082 59.0 9204 0.0007 0.4729
0.0082 60.0 9360 0.0007 0.4729

Framework versions

  • Transformers 4.26.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train dkqjrm/20230823013619