20230822202056
This model is a fine-tuned version of bert-large-cased on the super_glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.1724
- Accuracy: 0.7112
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 11
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 312 | 0.1785 | 0.5307 |
0.2552 | 2.0 | 624 | 0.1826 | 0.5054 |
0.2552 | 3.0 | 936 | 0.3328 | 0.4729 |
0.24 | 4.0 | 1248 | 0.2050 | 0.4729 |
0.2369 | 5.0 | 1560 | 0.1750 | 0.6065 |
0.2369 | 6.0 | 1872 | 0.1752 | 0.4765 |
0.2199 | 7.0 | 2184 | 0.1799 | 0.5921 |
0.2199 | 8.0 | 2496 | 0.1896 | 0.4729 |
0.1955 | 9.0 | 2808 | 0.1727 | 0.6245 |
0.185 | 10.0 | 3120 | 0.1734 | 0.5668 |
0.185 | 11.0 | 3432 | 0.1781 | 0.5812 |
0.184 | 12.0 | 3744 | 0.1711 | 0.6318 |
0.1819 | 13.0 | 4056 | 0.1783 | 0.4910 |
0.1819 | 14.0 | 4368 | 0.1703 | 0.6534 |
0.1793 | 15.0 | 4680 | 0.1697 | 0.6931 |
0.1793 | 16.0 | 4992 | 0.1710 | 0.6643 |
0.179 | 17.0 | 5304 | 0.1728 | 0.6534 |
0.1784 | 18.0 | 5616 | 0.1712 | 0.6498 |
0.1784 | 19.0 | 5928 | 0.1726 | 0.6065 |
0.1778 | 20.0 | 6240 | 0.1720 | 0.6679 |
0.1761 | 21.0 | 6552 | 0.1724 | 0.6606 |
0.1761 | 22.0 | 6864 | 0.1792 | 0.6534 |
0.1761 | 23.0 | 7176 | 0.1700 | 0.6715 |
0.1761 | 24.0 | 7488 | 0.1698 | 0.6679 |
0.1748 | 25.0 | 7800 | 0.1697 | 0.6968 |
0.1744 | 26.0 | 8112 | 0.1729 | 0.6859 |
0.1744 | 27.0 | 8424 | 0.1702 | 0.6570 |
0.1736 | 28.0 | 8736 | 0.1708 | 0.6931 |
0.1723 | 29.0 | 9048 | 0.1698 | 0.6787 |
0.1723 | 30.0 | 9360 | 0.1799 | 0.6462 |
0.1735 | 31.0 | 9672 | 0.1727 | 0.6751 |
0.1735 | 32.0 | 9984 | 0.1732 | 0.6498 |
0.1722 | 33.0 | 10296 | 0.1702 | 0.6751 |
0.1709 | 34.0 | 10608 | 0.1707 | 0.6968 |
0.1709 | 35.0 | 10920 | 0.1714 | 0.6968 |
0.1697 | 36.0 | 11232 | 0.1712 | 0.6751 |
0.1696 | 37.0 | 11544 | 0.1788 | 0.6570 |
0.1696 | 38.0 | 11856 | 0.1703 | 0.6787 |
0.1697 | 39.0 | 12168 | 0.1735 | 0.6751 |
0.1697 | 40.0 | 12480 | 0.1740 | 0.6787 |
0.1683 | 41.0 | 12792 | 0.1710 | 0.6895 |
0.1688 | 42.0 | 13104 | 0.1724 | 0.7076 |
0.1688 | 43.0 | 13416 | 0.1718 | 0.7004 |
0.1679 | 44.0 | 13728 | 0.1736 | 0.7040 |
0.1681 | 45.0 | 14040 | 0.1720 | 0.7040 |
0.1681 | 46.0 | 14352 | 0.1717 | 0.7076 |
0.1664 | 47.0 | 14664 | 0.1710 | 0.6895 |
0.1664 | 48.0 | 14976 | 0.1766 | 0.6895 |
0.1662 | 49.0 | 15288 | 0.1729 | 0.7040 |
0.1655 | 50.0 | 15600 | 0.1704 | 0.7076 |
0.1655 | 51.0 | 15912 | 0.1711 | 0.7184 |
0.1665 | 52.0 | 16224 | 0.1709 | 0.7040 |
0.1651 | 53.0 | 16536 | 0.1711 | 0.6931 |
0.1651 | 54.0 | 16848 | 0.1736 | 0.7040 |
0.1646 | 55.0 | 17160 | 0.1712 | 0.7112 |
0.1646 | 56.0 | 17472 | 0.1740 | 0.7076 |
0.1647 | 57.0 | 17784 | 0.1723 | 0.7076 |
0.1642 | 58.0 | 18096 | 0.1715 | 0.7004 |
0.1642 | 59.0 | 18408 | 0.1727 | 0.7076 |
0.1643 | 60.0 | 18720 | 0.1724 | 0.7112 |
Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.