20230822105331

This model is a fine-tuned version of bert-large-cased on the super_glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3495
  • Accuracy: 0.4729

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 11
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 60.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 312 7.6648 0.5271
3.587 2.0 624 0.6882 0.4729
3.587 3.0 936 1.0025 0.4729
2.3815 4.0 1248 2.3514 0.5271
2.2566 5.0 1560 2.2928 0.5271
2.2566 6.0 1872 1.7104 0.5271
2.15 7.0 2184 1.0133 0.5271
2.15 8.0 2496 2.0623 0.4729
1.9744 9.0 2808 1.7197 0.4729
2.0161 10.0 3120 2.4539 0.5271
2.0161 11.0 3432 0.3721 0.4729
1.9705 12.0 3744 1.6829 0.4729
1.9852 13.0 4056 1.6828 0.4729
1.9852 14.0 4368 0.4861 0.4729
1.8881 15.0 4680 0.9674 0.5271
1.8881 16.0 4992 0.4690 0.5271
1.6994 17.0 5304 1.8712 0.4729
1.6662 18.0 5616 1.5880 0.4729
1.6662 19.0 5928 0.8004 0.4729
1.6315 20.0 6240 1.1683 0.4729
1.5675 21.0 6552 0.7509 0.5271
1.5675 22.0 6864 0.4691 0.5271
1.6442 23.0 7176 0.5092 0.4729
1.6442 24.0 7488 0.3482 0.5271
1.4097 25.0 7800 1.3770 0.5271
1.3654 26.0 8112 0.9837 0.5271
1.3654 27.0 8424 1.5820 0.5271
1.3798 28.0 8736 2.0902 0.4729
1.2375 29.0 9048 0.3487 0.4729
1.2375 30.0 9360 1.7541 0.5271
1.1474 31.0 9672 0.6072 0.5271
1.1474 32.0 9984 0.6279 0.5271
1.1276 33.0 10296 0.3904 0.4729
1.0103 34.0 10608 0.3875 0.4729
1.0103 35.0 10920 0.6633 0.5271
1.0402 36.0 11232 0.3507 0.4729
0.9725 37.0 11544 0.4593 0.5271
0.9725 38.0 11856 0.4105 0.4729
0.8985 39.0 12168 0.3554 0.5271
0.8985 40.0 12480 1.4254 0.4729
0.93 41.0 12792 0.4509 0.4729
0.8076 42.0 13104 0.3815 0.5271
0.8076 43.0 13416 0.4002 0.4729
0.7373 44.0 13728 0.4687 0.4729
0.7011 45.0 14040 0.3481 0.5271
0.7011 46.0 14352 0.3538 0.4729
0.6638 47.0 14664 0.4579 0.5271
0.6638 48.0 14976 0.3623 0.4729
0.6146 49.0 15288 0.3498 0.4729
0.5636 50.0 15600 0.4416 0.5271
0.5636 51.0 15912 0.3922 0.4729
0.5368 52.0 16224 0.4049 0.5271
0.4917 53.0 16536 0.3605 0.4729
0.4917 54.0 16848 0.3491 0.5271
0.4658 55.0 17160 0.3615 0.4729
0.4658 56.0 17472 0.3505 0.5271
0.4389 57.0 17784 0.3542 0.4729
0.4097 58.0 18096 0.3499 0.4729
0.4097 59.0 18408 0.3565 0.5271
0.3867 60.0 18720 0.3495 0.4729

Framework versions

  • Transformers 4.26.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train dkqjrm/20230822105331