See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: katuni4ka/tiny-random-falcon-40b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 1ed05c663c7d03c9_train_data.json
ds_type: json
field: text
path: /workspace/input_data/1ed05c663c7d03c9_train_data.json
type: completion
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 3
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 6
gradient_checkpointing: true
group_by_length: false
hub_model_id: dimasik87/215b0d7a-ffe6-4846-9c5e-b572c0e8e862
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 70GiB
max_steps: 50
micro_batch_size: 4
mlflow_experiment_name: /tmp/1ed05c663c7d03c9_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 2048
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_dtype: bfloat16
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 215b0d7a-ffe6-4846-9c5e-b572c0e8e862
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 215b0d7a-ffe6-4846-9c5e-b572c0e8e862
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
215b0d7a-ffe6-4846-9c5e-b572c0e8e862
This model is a fine-tuned version of katuni4ka/tiny-random-falcon-40b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 10.9848
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 6
- total_train_batch_size: 24
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
66.6603 | 0.0003 | 1 | 11.1075 |
66.6068 | 0.0015 | 6 | 11.1015 |
66.4966 | 0.0030 | 12 | 11.0795 |
66.2697 | 0.0046 | 18 | 11.0519 |
66.2157 | 0.0061 | 24 | 11.0262 |
66.0429 | 0.0076 | 30 | 11.0060 |
65.9892 | 0.0091 | 36 | 10.9927 |
65.8852 | 0.0107 | 42 | 10.9864 |
65.9682 | 0.0122 | 48 | 10.9848 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Model tree for dimasik87/215b0d7a-ffe6-4846-9c5e-b572c0e8e862
Base model
katuni4ka/tiny-random-falcon-40b