Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 25eb85769da092cf_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/25eb85769da092cf_train_data.json
  type:
    field_instruction: instruction
    field_output: output
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 3
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: dimasik1987/70586362-1641-4658-8ae5-b18ed7d6b2aa
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 75GiB
max_steps: 25
micro_batch_size: 4
mlflow_experiment_name: /tmp/25eb85769da092cf_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 4056
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_dtype: bfloat16
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 70586362-1641-4658-8ae5-b18ed7d6b2aa
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 70586362-1641-4658-8ae5-b18ed7d6b2aa
warmup_ratio: 0.05
weight_decay: 0.01
xformers_attention: null

70586362-1641-4658-8ae5-b18ed7d6b2aa

This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-Chat-v1.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2100

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 2
  • training_steps: 25

Training results

Training Loss Epoch Step Validation Loss
1.1508 0.0007 1 1.2968
1.1726 0.0020 3 1.2708
1.328 0.0039 6 1.2351
1.3114 0.0059 9 1.2249
1.2875 0.0078 12 1.2191
1.2259 0.0098 15 1.2140
1.2394 0.0118 18 1.2115
1.1566 0.0137 21 1.2103
1.1747 0.0157 24 1.2100

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for dimasik1987/70586362-1641-4658-8ae5-b18ed7d6b2aa

Adapter
(606)
this model