File size: 4,674 Bytes
30a2f10
46590e2
 
6a5c74a
30a2f10
46590e2
 
 
 
 
6a5c74a
9e764e3
3f07b4b
 
30a2f10
 
46590e2
30a2f10
79a5c2b
30a2f10
79a5c2b
30a2f10
46590e2
30a2f10
46590e2
30a2f10
46590e2
30a2f10
46590e2
30a2f10
46590e2
30a2f10
7d94c1e
9203a3b
3d99bce
 
 
9203a3b
30a2f10
46590e2
30a2f10
e34c520
30a2f10
46590e2
30a2f10
79a5c2b
 
 
 
46590e2
e34c520
30a2f10
e34c520
46590e2
 
30a2f10
79a5c2b
 
 
 
 
 
 
 
46590e2
30a2f10
46590e2
 
 
 
79a5c2b
 
 
 
 
46590e2
79a5c2b
 
 
 
 
 
 
 
 
3764f1d
79a5c2b
 
 
30a2f10
3764f1d
 
79a5c2b
 
3764f1d
 
 
79a5c2b
3764f1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
language:
- en
license: llama3
library_name: transformers
tags:
- orpo
- llama 3
- rlhf
- sft
base_model:
- meta-llama/Meta-Llama-3-8B
datasets:
- mlabonne/orpo-dpo-mix-40k
---

# dfurman/Llama-3-8B-Orpo-v0.1

![](https://raw.githubusercontent.com/daniel-furman/sft-demos/main/assets/llama_3.jpeg)

This is an ORPO fine-tune of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on 4k samples of [mlabonne/orpo-dpo-mix-40k](https://huggingface.co/datasets/mlabonne/orpo-dpo-mix-40k).

It's a successful fine-tune that follows the ChatML template!

## 🔎 Application

This model uses a context window of 8k. It was trained with the ChatML template.

## 🏆 Evaluation

### Open LLM Leaderboard

| Model                                                                                                                                           |   Average |   ARC |   HellaSwag | MMLU  |   TruthfulQA |  Winogrande |  GSM8K  |
| ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------: | --------: | --------: | ---------: | --------: |  --------: |  --------: |
| [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) [📄](https://huggingface.co/datasets/open-llm-leaderboard/details_meta-llama__Meta-Llama-3-8B-Instruct)    |       66.87 |     60.75 |     78.55 |      67.07 |     51.65 |     74.51 |     68.69 |
| [**dfurman/Llama-3-8B-Orpo-v0.1**](https://huggingface.co/dfurman/Llama-3-8B-Orpo-v0.1) [📄](https://huggingface.co/datasets/open-llm-leaderboard/details_dfurman__Llama-3-8B-Orpo-v0.1)                     | **64.67** | **60.67** | **82.56** | **66.59** | **50.47** |     **79.01** |     **48.75** |
| [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) [📄](https://huggingface.co/datasets/open-llm-leaderboard/details_meta-llama__Meta-Llama-3-8B)                               |     62.35 |      59.22 |     82.02 |      66.49 |      43.95 |     77.11 |     45.34 |


## 📈 Training curves

You can find the experiment on W&B at [this address](https://wandb.ai/dryanfurman/huggingface/runs/uvr916mv?nw=nwuserdryanfurman).

## 💻 Usage

<details>

<summary>Setup</summary>

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

if torch.cuda.get_device_capability()[0] >= 8:
    !pip install -qqq flash-attn
    attn_implementation = "flash_attention_2"
    torch_dtype = torch.bfloat16
else:
    attn_implementation = "eager"
    torch_dtype = torch.float16

model = "dfurman/Llama-3-8B-Orpo-v0.1"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={
        "torch_dtype": torch_dtype,
        "device_map": "auto",
        "attn_implementation": attn_implementation,
    }
)
```

</details>

### Run

```python
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "Tell me a recipe for a spicy margarita."},
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
print("***Prompt:\n", prompt)

outputs = pipeline(prompt, max_new_tokens=1000, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print("***Generation:\n", outputs[0]["generated_text"][len(prompt):])
```

<details>

<summary>Output</summary>

```
"""***Prompt:
 <|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
Tell me a recipe for a spicy margarita.<|im_end|>
<|im_start|>assistant

***Generation:
 Sure! Here's a recipe for a spicy margarita:

Ingredients:

- 2 oz silver tequila
- 1 oz triple sec
- 1 oz fresh lime juice
- 1/2 oz simple syrup
- 1/2 oz fresh lemon juice
- 1/2 tsp jalapeño, sliced (adjust to taste)
- Ice cubes
- Salt for rimming the glass

Instructions:

1. Prepare the glass by running a lime wedge around the rim of the glass. Dip the rim into a shallow plate of salt to coat.
2. Combine the tequila, triple sec, lime juice, simple syrup, lemon juice, and jalapeño slices in a cocktail shaker.
3. Add ice cubes to the cocktail shaker and shake vigorously for 30 seconds to 1 minute.
4. Strain the cocktail into the prepared glass.
5. Garnish with a lime wedge and jalapeño slice.

Enjoy! This spicy margarita has a nice balance of sweetness and acidity, with a subtle heat from the jalapeño that builds gradually as you sip."""
```
</details>