Edit model card

t5-end2end-question-generation

This model is a fine-tuned version of t5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3875
  • Rouge1: 29.8409
  • Rouge2: 15.2583
  • Rougel: 25.4802
  • Rougelsum: 28.8023
  • Gen Len: 18.9971
  • Bleu: 1.8149
  • Bleu 0: 71.9158
  • Bleu 1: 46.3975
  • Bleu 2: 31.3479
  • Bleu 3: 20.236

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len Bleu Bleu 0 Bleu 1 Bleu 2 Bleu 3
1.4252 0.21 500 1.4638 29.5937 14.6438 25.1309 28.5076 18.9990 1.7595 70.9726 44.8789 29.8013 18.9402
1.3591 0.42 1000 1.4619 29.4017 14.7271 25.1139 28.3406 19.0 1.7286 70.9671 45.415 30.2413 19.1132
1.426 0.64 1500 1.4313 29.9163 15.0542 25.5098 28.852 19.0 1.8109 71.924 46.0312 30.8421 19.6842
1.5525 0.85 2000 1.4177 30.0353 15.2661 25.6495 28.9867 19.0 1.8387 72.1696 46.3888 31.1768 20.1203
1.5035 1.06 2500 1.4185 29.7649 15.1864 25.4353 28.738 19.0 1.7868 71.9618 46.6091 31.4797 20.209
1.4294 1.27 3000 1.4138 29.5473 14.877 25.1373 28.5195 18.9990 1.7516 71.3163 45.6707 30.7404 19.6335
1.4336 1.49 3500 1.4058 29.9003 15.213 25.4924 28.8375 19.0 1.799 71.8573 46.2609 31.2086 20.0675
1.4434 1.7 4000 1.3978 30.0046 15.2722 25.6091 28.9496 18.9990 1.839 72.2448 46.6283 31.463 20.2921
1.4285 1.91 4500 1.3984 30.0478 15.1083 25.4469 28.9337 18.9990 1.8247 71.6695 45.7508 30.7813 19.7828
1.3926 2.12 5000 1.3982 30.0837 15.4009 25.6203 29.0334 18.9990 1.8237 72.2626 46.662 31.5043 20.2789
1.369 2.33 5500 1.3980 29.9042 15.1828 25.4962 28.8323 18.9990 1.8064 71.8783 46.1411 31.0047 19.9691
1.3577 2.55 6000 1.3936 29.9335 15.2821 25.5855 28.9161 19.0 1.8099 71.8881 46.3101 31.3396 20.3185
1.3636 2.76 6500 1.3908 29.9512 15.2434 25.5476 28.9224 18.9995 1.8242 71.9772 46.3212 31.2688 20.1704
1.3799 2.97 7000 1.3900 29.9393 15.1658 25.4702 28.8729 18.9971 1.8055 71.9431 46.1286 30.9969 19.9389
1.3318 3.18 7500 1.3934 29.7982 15.132 25.3908 28.7333 18.9995 1.7908 71.7081 46.1832 31.1416 20.1409
1.3208 3.4 8000 1.3928 29.9378 15.1421 25.4586 28.8793 19.0 1.8258 71.7795 45.969 30.9173 19.9664
1.3135 3.61 8500 1.3888 29.9264 15.2179 25.5529 28.875 19.0 1.8363 71.9537 46.2706 31.2245 20.2624
1.323 3.82 9000 1.3868 29.8749 15.2251 25.4639 28.7949 18.9971 1.812 71.6918 46.1503 31.0437 19.9965
1.3325 4.03 9500 1.3868 29.8804 15.2658 25.4848 28.8238 18.9971 1.8105 71.9146 46.3617 31.2842 20.1447
1.296 4.24 10000 1.3882 29.941 15.28 25.5209 28.9109 18.9971 1.817 71.994 46.3801 31.216 20.0596
1.3027 4.46 10500 1.3883 29.8492 15.2017 25.4398 28.7911 18.9971 1.7994 71.8366 46.0939 30.9953 19.9115
1.3046 4.67 11000 1.3880 29.8538 15.2605 25.4897 28.8236 18.9971 1.8136 71.9285 46.3689 31.2969 20.1728
1.294 4.88 11500 1.3875 29.8409 15.2583 25.4802 28.8023 18.9971 1.8149 71.9158 46.3975 31.3479 20.236

Framework versions

  • Transformers 4.27.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.