Language model: gelectra-large-germanquad
Language: German
Training data: GermanQuAD train set (~ 12MB)
Eval data: GermanQuAD test set (~ 5MB)
Infrastructure: 1x V100 GPU
Published: Apr 21st, 2021


  • We trained a German question answering model with a gelectra-large model as its basis.
  • The dataset is GermanQuAD, a new, German language dataset, which we hand-annotated and published online.
  • The training dataset is one-way annotated and contains 11518 questions and 11518 answers, while the test dataset is three-way annotated so that there are 2204 questions and with 2204·3−76 = 6536 answers, because we removed 76 wrong answers.

See for more details and dataset download in SQuAD format.


batch_size = 24
n_epochs = 2
max_seq_len = 384
learning_rate = 3e-5
lr_schedule = LinearWarmup
embeds_dropout_prob = 0.1


We evaluated the extractive question answering performance on our GermanQuAD test set. Model types and training data are included in the model name. For finetuning XLM-Roberta, we use the English SQuAD v2.0 dataset. The GELECTRA models are warm started on the German translation of SQuAD v1.1 and finetuned on \\\\germanquad. The human baseline was computed for the 3-way test set by taking one answer as prediction and the other two as ground truth. performancetable


  • Timo Möller: timo.moeller [at]
  • Julian Risch: julian.risch [at]
  • Malte Pietsch: malte.pietsch [at]

    About us

    deepset logo We bring NLP to the industry via open source!
    Our focus: Industry specific language models & large scale QA systems.

Some of our work:

Get in touch: Twitter | LinkedIn | Slack | GitHub Discussions | Website

By the way: we're hiring!


Select AutoNLP in the “Train” menu to fine-tune this model automatically.

Downloads last month
Hosted inference API
Question Answering
This model can be loaded on the Inference API on-demand.