# deepseek-ai /deepseek-math-7b-rl

### 1. Introduction to DeepSeekMath

See the Introduction for more details.

### 2. How to Use

Here give some examples of how to use our model.

Chat Completion

❗❗❗ Please use chain-of-thought prompt to test DeepSeekMath-Instruct and DeepSeekMath-RL:

• Chinese questions: {question}\n请通过逐步推理来解答问题，并把最终答案放置于\boxed{}中。

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig

model_name = "deepseek-ai/deepseek-math-7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
model.generation_config = GenerationConfig.from_pretrained(model_name)

messages = [
{"role": "user", "content": "what is the integral of x^2 from 0 to 2?\nPlease reason step by step, and put your final answer within \\boxed{}."}
]
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)

result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
print(result)


Avoiding the use of the provided function apply_chat_template, you can also interact with our model following the sample template. Note that messages should be replaced by your input.

User: {messages[0]['content']}

Assistant: {messages[1]['content']}<｜end▁of▁sentence｜>User: {messages[2]['content']}

Assistant:


Note: By default (add_special_tokens=True), our tokenizer automatically adds a bos_token (<｜begin▁of▁sentence｜>) before the input text. Additionally, since the system prompt is not compatible with this version of our models, we DO NOT RECOMMEND including the system prompt in your input.

See the LICENSE-MODEL for more details.