# deepseek-ai /deepseek-math-7b-instruct

### 1. Introduction to DeepSeekMath

See the Introduction for more details.

### 2. How to Use

Here give some examples of how to use our model.

Chat Completion

❗❗❗ Please use chain-of-thought prompt to test DeepSeekMath-Instruct and DeepSeekMath-RL:

• Chinese questions: {question}\n请通过逐步推理来解答问题，并把最终答案放置于\boxed{}中。

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig

model_name = "deepseek-ai/deepseek-math-7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
model.generation_config = GenerationConfig.from_pretrained(model_name)

messages = [
{"role": "user", "content": "what is the integral of x^2 from 0 to 2?\nPlease reason step by step, and put your final answer within \\boxed{}."}
]
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)

result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
print(result)


Avoiding the use of the provided function apply_chat_template, you can also interact with our model following the sample template. Note that messages should be replaced by your input.

User: {messages[0]['content']}

Assistant: {messages[1]['content']}<｜end▁of▁sentence｜>User: {messages[2]['content']}

Assistant:


Note: By default (add_special_tokens=True), our tokenizer automatically adds a bos_token (<｜begin▁of▁sentence｜>) before the input text. Additionally, since the system prompt is not compatible with this version of our models, we DO NOT RECOMMEND including the system prompt in your input.