Edit model card

An generative AI made using microsoft/DialoGPT-small.

Trained on:

 https://www.kaggle.com/Cornell-University/movie-dialog-corpus

 https://www.kaggle.com/jef1056/discord-data

Important:

  The AI can be a bit weird at times as it is still undergoing training!
  
  At times it send stuff using :<random_wierd_words>: as they are discord emotes.
  
  It also send random @RandomName as it is trying to ping people.
  
  This works well on discord but on the web not so much but it is easy enough to remove such stuff using [re.sub](https://docs.python.org/3/library/re.html#re.sub)

Issues:

 The AI like with all conversation AI lacks a character, it changes its name way too often. This can be solved using an AIML chatbot to give it a stable character!
 

Live Demo

Example:

from transformers import AutoTokenizer, AutoModelWithLMHead
  
tokenizer = AutoTokenizer.from_pretrained("deepparag/DumBot")
model = AutoModelWithLMHead.from_pretrained("deepparag/DumBot")
# Let's chat for 4 lines
for step in range(4):
    # encode the new user input, add the eos_token and return a tensor in Pytorch
    new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
    # print(new_user_input_ids)
    # append the new user input tokens to the chat history
    bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
    # generated a response while limiting the total chat history to 1000 tokens, 
    chat_history_ids = model.generate(
        bot_input_ids, max_length=200,
        pad_token_id=tokenizer.eos_token_id,  
        no_repeat_ngram_size=4,       
        do_sample=True, 
        top_k=100, 
        top_p=0.7,
        temperature=0.8
    )
    
    # pretty print last ouput tokens from bot
    print("DumBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
Downloads last month
0
Hosted inference API
Conversational
Examples
Examples
Input a message to start chatting with deepparag/DumBot-Beta.
This model can be loaded on the Inference API on-demand.