SentenceTransformer based on Snowflake/snowflake-arctic-embed-l

This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Snowflake/snowflake-arctic-embed-l
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("deepali1021/finetuned_arctic_ft")
# Run inference
sentences = [
    'Who should you contact if you have questions or need further information regarding the Transportation Department Policy Manual?',
    "for familiarizing themselves with the latest version of the manual. \n \nConclusion \nThank you for reviewing the Transportation Department Policy Manual. Your commitment to safety, \ncustomer service, and compliance plays a crucial role in our department's success. If you have any \nquestions or need further information, please reach out to your supervisor or the department \nmanager. Your dedication and professionalism are appreciated.",
    'Transportation Department Policy Manual \n \nTable of Contents: \n \n• \nIntroduction \n• \nDepartment Overview \n• \nSafety and Vehicle Maintenance \n• \nDriver Responsibilities \n• \nRoute Planning and Optimization \n• \nCustomer Service \n• \nIncident Reporting and Investigation \n• \nCompliance with Regulations \n• \nTraining and Development \n• \nCommunication and Collaboration \n• \nFare Collection and Fee Structure \n• \nRoute Information and Rules \n• \nAmendments to the Policy Manual \n• \nConclusion \nIntroduction \nWelcome to the Transportation Department Policy Manual! This manual serves as a comprehensive \nguide to the policies, procedures, and expectations for employees working in the transportation',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.9375
cosine_accuracy@3 0.9792
cosine_accuracy@5 1.0
cosine_accuracy@10 1.0
cosine_precision@1 0.9375
cosine_precision@3 0.3264
cosine_precision@5 0.2
cosine_precision@10 0.1
cosine_recall@1 0.9375
cosine_recall@3 0.9792
cosine_recall@5 1.0
cosine_recall@10 1.0
cosine_ndcg@10 0.9718
cosine_mrr@10 0.9625
cosine_map@100 0.9625

Training Details

Training Dataset

Unnamed Dataset

  • Size: 20 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 20 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 12 tokens
    • mean: 16.3 tokens
    • max: 21 tokens
    • min: 34 tokens
    • mean: 95.1 tokens
    • max: 122 tokens
  • Samples:
    sentence_0 sentence_1
    What topics are covered in the Transportation Department Policy Manual? Transportation Department Policy Manual

    Table of Contents:


    Introduction

    Department Overview

    Safety and Vehicle Maintenance

    Driver Responsibilities

    Route Planning and Optimization

    Customer Service

    Incident Reporting and Investigation

    Compliance with Regulations

    Training and Development

    Communication and Collaboration

    Fare Collection and Fee Structure

    Route Information and Rules

    Amendments to the Policy Manual

    Conclusion
    Introduction
    Welcome to the Transportation Department Policy Manual! This manual serves as a comprehensive
    guide to the policies, procedures, and expectations for employees working in the transportation
    What is the purpose of the Transportation Department Policy Manual? Transportation Department Policy Manual

    Table of Contents:


    Introduction

    Department Overview

    Safety and Vehicle Maintenance

    Driver Responsibilities

    Route Planning and Optimization

    Customer Service

    Incident Reporting and Investigation

    Compliance with Regulations

    Training and Development

    Communication and Collaboration

    Fare Collection and Fee Structure

    Route Information and Rules

    Amendments to the Policy Manual

    Conclusion
    Introduction
    Welcome to the Transportation Department Policy Manual! This manual serves as a comprehensive
    guide to the policies, procedures, and expectations for employees working in the transportation
    What is the primary focus of the Transportation Department as outlined in the manual? department. It provides guidelines to ensure safe, efficient, and customer-focused transportation
    services. Please read this manual carefully and consult with your supervisor or the department
    manager if you have any questions or need further clarification.

    Department Overview
    The Transportation Department plays a critical role in providing reliable transportation services to
    our customers. Our department consists of 50 drivers, 10 dispatchers, and 5 maintenance
    technicians. In the past year, we transported over 500,000 passengers across various routes, ensuring
    their safety and satisfaction.

    Safety and Vehicle Maintenance
    Safety is our top priority. All vehicles undergo regular inspections and maintenance to ensure they
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 10
  • per_device_eval_batch_size: 10
  • num_train_epochs: 10
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 10
  • per_device_eval_batch_size: 10
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step cosine_ndcg@10
1.0 2 0.8107
2.0 4 0.9292
3.0 6 0.9623
4.0 8 0.9712
5.0 10 0.9642
6.0 12 0.9642
7.0 14 0.9642
8.0 16 0.9642
9.0 18 0.9718
10.0 20 0.9718

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.4.1
  • Transformers: 4.48.3
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.3.2
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
9
Safetensors
Model size
334M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for deepali1021/finetuned_arctic_ft

Finetuned
(83)
this model

Evaluation results