Edit model card

t5-small-squad-qg-a2c-spt

This model is a fine-tuned version of lmqg/t5-small-squad-qg on the qg_squadshifts dataset. It achieves the following results on the evaluation set:

  • Loss: 3.4424
  • Bleu: 0.2369
  • Precisions: [0.5087032407189018, 0.27403783600926385, 0.18636099825885083, 0.1320389623167492]
  • Brevity Penalty: 0.9790
  • Length Ratio: 0.9793
  • Translation Length: 42398
  • Reference Length: 43296

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • label_smoothing_factor: 0.15

Training results

Training Loss Epoch Step Validation Loss Bleu Precisions Brevity Penalty Length Ratio Translation Length Reference Length
3.646 1.0 42 3.4501 0.2324 [0.5031057356491574, 0.26807773815061764, 0.18061915046796256, 0.12696709585121602] 0.9853 0.9854 42663 43296
3.5951 2.0 84 3.4456 0.2328 [0.5061518076850274, 0.27000913957435696, 0.1832138903455107, 0.12926178476134007] 0.9759 0.9762 42264 43296
3.5572 3.0 126 3.4427 0.2355 [0.505242954779515, 0.27049412978970455, 0.18334962341171734, 0.12953889087192133] 0.9867 0.9868 42724 43296
3.5295 4.0 168 3.4411 0.2351 [0.5057055646865461, 0.27130317702804174, 0.1838566316518527, 0.12948538278525568] 0.9836 0.9837 42590 43296
3.4945 5.0 210 3.4418 0.2359 [0.5068653913859875, 0.27228491562273527, 0.18446938010211442, 0.1297804417225878] 0.9839 0.9840 42605 43296
3.4771 6.0 252 3.4432 0.2375 [0.507522591245159, 0.2735272802567554, 0.18594051980269422, 0.13157208938693074] 0.9839 0.9840 42605 43296
3.46 7.0 294 3.4431 0.2377 [0.5092926294961487, 0.2746595987943041, 0.1869911632623497, 0.13212859294179272] 0.9803 0.9805 42453 43296
3.4656 8.0 336 3.4413 0.2368 [0.5082384555547698, 0.2738076663025953, 0.18616789908655937, 0.1317669419321012] 0.9796 0.9798 42423 43296
3.443 9.0 378 3.4425 0.2373 [0.5089378360532025, 0.27438532587485365, 0.18661869668658967, 0.13227530576778043] 0.9792 0.9794 42404 43296
3.4455 10.0 420 3.4424 0.2369 [0.5087032407189018, 0.27403783600926385, 0.18636099825885083, 0.1320389623167492] 0.9790 0.9793 42398 43296

Framework versions

  • Transformers 4.27.4
  • Pytorch 1.9.0
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results