|
--- |
|
language: multilingual |
|
license: mit |
|
widget: |
|
- text: "and I cannot conceive the reafon why [MASK] hath" |
|
- text: "Täkäläinen sanomalehdistö [MASK] erit - täin" |
|
- text: "Det vore [MASK] häller nödvändigt att be" |
|
- text: "Comme, à cette époque [MASK] était celle de la" |
|
- text: "In [MASK] an atmosphärischen Nahrungsmitteln" |
|
--- |
|
|
|
# Historic Language Models (HLMs) |
|
|
|
## Languages |
|
|
|
Our Historic Language Models Zoo contains support for the following languages - incl. their training data source: |
|
|
|
| Language | Training data | Size |
|
| -------- | ------------- | ---- |
|
| German | [Europeana](http://www.europeana-newspapers.eu/) | 13-28GB (filtered) |
|
| French | [Europeana](http://www.europeana-newspapers.eu/) | 11-31GB (filtered) |
|
| English | [British Library](https://data.bl.uk/digbks/db14.html) | 24GB (year filtered) |
|
| Finnish | [Europeana](http://www.europeana-newspapers.eu/) | 1.2GB |
|
| Swedish | [Europeana](http://www.europeana-newspapers.eu/) | 1.1GB |
|
|
|
## Models |
|
|
|
At the moment, the following models are available on the model hub: |
|
|
|
| Model identifier | Model Hub link |
|
| --------------------------------------------- | -------------------------------------------------------------------------- |
|
| `dbmdz/bert-base-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-multilingual-cased) |
|
| `dbmdz/bert-base-historic-english-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-english-cased) |
|
| `dbmdz/bert-base-finnish-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-finnish-europeana-cased) |
|
| `dbmdz/bert-base-swedish-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-swedish-europeana-cased) |
|
|
|
We also released smaller models for the multilingual model: |
|
|
|
| Model identifier | Model Hub link |
|
| ----------------------------------------------- | --------------------------------------------------------------------------- |
|
| `dbmdz/bert-tiny-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-tiny-historic-multilingual-cased) |
|
| `dbmdz/bert-mini-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-mini-historic-multilingual-cased) |
|
| `dbmdz/bert-small-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-small-historic-multilingual-cased) |
|
| `dbmdz/bert-medium-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-multilingual-cased) |
|
|
|
**Notice**: We have released language models for Historic German and French trained on more noisier data earlier - see |
|
[this repo](https://github.com/stefan-it/europeana-bert) for more information: |
|
|
|
| Model identifier | Model Hub link |
|
| --------------------------------------------- | -------------------------------------------------------------------------- |
|
| `dbmdz/bert-base-german-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-german-europeana-cased) |
|
| `dbmdz/bert-base-french-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-french-europeana-cased) |
|
|
|
# Corpora Stats |
|
|
|
## German Europeana Corpus |
|
|
|
We provide some statistics using different thresholds of ocr confidences, in order to shrink down the corpus size |
|
and use less-noisier data: |
|
|
|
| OCR confidence | Size |
|
| -------------- | ---- |
|
| **0.60** | 28GB |
|
| 0.65 | 18GB |
|
| 0.70 | 13GB |
|
|
|
For the final corpus we use a OCR confidence of 0.6 (28GB). The following plot shows a tokens per year distribution: |
|
|
|
![German Europeana Corpus Stats](stats/figures/german_europeana_corpus_stats.png) |
|
|
|
## French Europeana Corpus |
|
|
|
Like German, we use different ocr confidence thresholds: |
|
|
|
| OCR confidence | Size |
|
| -------------- | ---- |
|
| 0.60 | 31GB |
|
| 0.65 | 27GB |
|
| **0.70** | 27GB |
|
| 0.75 | 23GB |
|
| 0.80 | 11GB |
|
|
|
For the final corpus we use a OCR confidence of 0.7 (27GB). The following plot shows a tokens per year distribution: |
|
|
|
![French Europeana Corpus Stats](stats/figures/french_europeana_corpus_stats.png) |
|
|
|
## British Library Corpus |
|
|
|
Metadata is taken from [here](https://data.bl.uk/digbks/DB21.html). Stats incl. year filtering: |
|
|
|
| Years | Size |
|
| ----------------- | ---- |
|
| ALL | 24GB |
|
| >= 1800 && < 1900 | 24GB |
|
|
|
We use the year filtered variant. The following plot shows a tokens per year distribution: |
|
|
|
![British Library Corpus Stats](stats/figures/bl_corpus_stats.png) |
|
|
|
## Finnish Europeana Corpus |
|
|
|
| OCR confidence | Size |
|
| -------------- | ---- |
|
| 0.60 | 1.2GB |
|
|
|
The following plot shows a tokens per year distribution: |
|
|
|
![Finnish Europeana Corpus Stats](stats/figures/finnish_europeana_corpus_stats.png) |
|
|
|
## Swedish Europeana Corpus |
|
|
|
| OCR confidence | Size |
|
| -------------- | ---- |
|
| 0.60 | 1.1GB |
|
|
|
The following plot shows a tokens per year distribution: |
|
|
|
![Swedish Europeana Corpus Stats](stats/figures/swedish_europeana_corpus_stats.png) |
|
|
|
## All Corpora |
|
|
|
The following plot shows a tokens per year distribution of the complete training corpus: |
|
|
|
![All Corpora Stats](stats/figures/all_corpus_stats.png) |
|
|
|
# Multilingual Vocab generation |
|
|
|
For the first attempt, we use the first 10GB of each pretraining corpus. We upsample both Finnish and Swedish to ~10GB. |
|
The following tables shows the exact size that is used for generating a 32k and 64k subword vocabs: |
|
|
|
| Language | Size |
|
| -------- | ---- |
|
| German | 10GB |
|
| French | 10GB |
|
| English | 10GB |
|
| Finnish | 9.5GB |
|
| Swedish | 9.7GB |
|
|
|
We then calculate the subword fertility rate and portion of `[UNK]`s over the following NER corpora: |
|
|
|
| Language | NER corpora |
|
| -------- | ------------------ |
|
| German | CLEF-HIPE, NewsEye |
|
| French | CLEF-HIPE, NewsEye |
|
| English | CLEF-HIPE |
|
| Finnish | NewsEye |
|
| Swedish | NewsEye |
|
|
|
Breakdown of subword fertility rate and unknown portion per language for the 32k vocab: |
|
|
|
| Language | Subword fertility | Unknown portion |
|
| -------- | ------------------ | --------------- |
|
| German | 1.43 | 0.0004 |
|
| French | 1.25 | 0.0001 |
|
| English | 1.25 | 0.0 |
|
| Finnish | 1.69 | 0.0007 |
|
| Swedish | 1.43 | 0.0 |
|
|
|
Breakdown of subword fertility rate and unknown portion per language for the 64k vocab: |
|
|
|
| Language | Subword fertility | Unknown portion |
|
| -------- | ------------------ | --------------- |
|
| German | 1.31 | 0.0004 |
|
| French | 1.16 | 0.0001 |
|
| English | 1.17 | 0.0 |
|
| Finnish | 1.54 | 0.0007 |
|
| Swedish | 1.32 | 0.0 |
|
|
|
# Final pretraining corpora |
|
|
|
We upsample Swedish and Finnish to ~27GB. The final stats for all pretraining corpora can be seen here: |
|
|
|
| Language | Size |
|
| -------- | ---- |
|
| German | 28GB |
|
| French | 27GB |
|
| English | 24GB |
|
| Finnish | 27GB |
|
| Swedish | 27GB |
|
|
|
Total size is 130GB. |
|
|
|
# Smaller multilingual models |
|
|
|
Inspired by the ["Well-Read Students Learn Better: On the Importance of Pre-training Compact Models"](https://arxiv.org/abs/1908.08962) |
|
paper, we train smaller models (different layers and hidden sizes), and report number of parameters and pre-training costs: |
|
|
|
| Model (Layer / Hidden size) | Parameters | Pre-Training time |
|
| --------------------------- | ----------: | ----------------------: |
|
| hmBERT Tiny ( 2/128) | 4.58M | 4.3 sec / 1,000 steps |
|
| hmBERT Mini ( 4/256) | 11.55M | 10.5 sec / 1,000 steps |
|
| hmBERT Small ( 4/512) | 29.52M | 20.7 sec / 1,000 steps |
|
| hmBERT Medium ( 8/512) | 42.13M | 35.0 sec / 1,000 steps |
|
| hmBERT Base (12/768) | 110.62M | 80.0 sec / 1,000 steps |
|
|
|
We then perform downstream evaluations on the multilingual [NewsEye](https://zenodo.org/record/4573313#.Ya3oVr-ZNzU) dataset: |
|
|
|
![NewsEye hmBERT Evaluation](stats/figures/newseye-hmbert-evaluation.png) |
|
|
|
# Pretraining |
|
|
|
## Multilingual model - hmBERT Base |
|
|
|
We train a multilingual BERT model using the 32k vocab with the official BERT implementation |
|
on a v3-32 TPU using the following parameters: |
|
|
|
```bash |
|
python3 run_pretraining.py --input_file gs://histolectra/historic-multilingual-tfrecords/*.tfrecord \ |
|
--output_dir gs://histolectra/bert-base-historic-multilingual-cased \ |
|
--bert_config_file ./config.json \ |
|
--max_seq_length=512 \ |
|
--max_predictions_per_seq=75 \ |
|
--do_train=True \ |
|
--train_batch_size=128 \ |
|
--num_train_steps=3000000 \ |
|
--learning_rate=1e-4 \ |
|
--save_checkpoints_steps=100000 \ |
|
--keep_checkpoint_max=20 \ |
|
--use_tpu=True \ |
|
--tpu_name=electra-2 \ |
|
--num_tpu_cores=32 |
|
``` |
|
|
|
The following plot shows the pretraining loss curve: |
|
|
|
![Training loss curve](stats/figures/pretraining_loss_historic-multilingual.png) |
|
|
|
## Smaller multilingual models |
|
|
|
We use the same parameters as used for training the base model. |
|
|
|
### hmBERT Tiny |
|
|
|
The following plot shows the pretraining loss curve for the tiny model: |
|
|
|
![Training loss curve](stats/figures/pretraining_loss_hmbert-tiny.png) |
|
|
|
### hmBERT Mini |
|
|
|
The following plot shows the pretraining loss curve for the mini model: |
|
|
|
![Training loss curve](stats/figures/pretraining_loss_hmbert-mini.png) |
|
|
|
### hmBERT Small |
|
|
|
The following plot shows the pretraining loss curve for the small model: |
|
|
|
![Training loss curve](stats/figures/pretraining_loss_hmbert-small.png) |
|
|
|
### hmBERT Medium |
|
|
|
The following plot shows the pretraining loss curve for the medium model: |
|
|
|
![Training loss curve](stats/figures/pretraining_loss_hmbert-medium.png) |
|
|
|
## English model |
|
|
|
The English BERT model - with texts from British Library corpus - was trained with the Hugging Face |
|
JAX/FLAX implementation for 10 epochs (approx. 1M steps) on a v3-8 TPU, using the following command: |
|
|
|
```bash |
|
python3 run_mlm_flax.py --model_type bert \ |
|
--config_name /mnt/datasets/bert-base-historic-english-cased/ \ |
|
--tokenizer_name /mnt/datasets/bert-base-historic-english-cased/ \ |
|
--train_file /mnt/datasets/bl-corpus/bl_1800-1900_extracted.txt \ |
|
--validation_file /mnt/datasets/bl-corpus/english_validation.txt \ |
|
--max_seq_length 512 \ |
|
--per_device_train_batch_size 16 \ |
|
--learning_rate 1e-4 \ |
|
--num_train_epochs 10 \ |
|
--preprocessing_num_workers 96 \ |
|
--output_dir /mnt/datasets/bert-base-historic-english-cased-512-noadafactor-10e \ |
|
--save_steps 2500 \ |
|
--eval_steps 2500 \ |
|
--warmup_steps 10000 \ |
|
--line_by_line \ |
|
--pad_to_max_length |
|
``` |
|
|
|
The following plot shows the pretraining loss curve: |
|
|
|
![Training loss curve](stats/figures/pretraining_loss_historic_english.png) |
|
|
|
## Finnish model |
|
|
|
The BERT model - with texts from Finnish part of Europeana - was trained with the Hugging Face |
|
JAX/FLAX implementation for 40 epochs (approx. 1M steps) on a v3-8 TPU, using the following command: |
|
|
|
```bash |
|
python3 run_mlm_flax.py --model_type bert \ |
|
--config_name /mnt/datasets/bert-base-finnish-europeana-cased/ \ |
|
--tokenizer_name /mnt/datasets/bert-base-finnish-europeana-cased/ \ |
|
--train_file /mnt/datasets/hlms/extracted_content_Finnish_0.6.txt \ |
|
--validation_file /mnt/datasets/hlms/finnish_validation.txt \ |
|
--max_seq_length 512 \ |
|
--per_device_train_batch_size 16 \ |
|
--learning_rate 1e-4 \ |
|
--num_train_epochs 40 \ |
|
--preprocessing_num_workers 96 \ |
|
--output_dir /mnt/datasets/bert-base-finnish-europeana-cased-512-dupe1-noadafactor-40e \ |
|
--save_steps 2500 \ |
|
--eval_steps 2500 \ |
|
--warmup_steps 10000 \ |
|
--line_by_line \ |
|
--pad_to_max_length |
|
``` |
|
|
|
The following plot shows the pretraining loss curve: |
|
|
|
![Training loss curve](stats/figures/pretraining_loss_finnish_europeana.png) |
|
|
|
## Swedish model |
|
|
|
The BERT model - with texts from Swedish part of Europeana - was trained with the Hugging Face |
|
JAX/FLAX implementation for 40 epochs (approx. 660K steps) on a v3-8 TPU, using the following command: |
|
|
|
```bash |
|
python3 run_mlm_flax.py --model_type bert \ |
|
--config_name /mnt/datasets/bert-base-swedish-europeana-cased/ \ |
|
--tokenizer_name /mnt/datasets/bert-base-swedish-europeana-cased/ \ |
|
--train_file /mnt/datasets/hlms/extracted_content_Swedish_0.6.txt \ |
|
--validation_file /mnt/datasets/hlms/swedish_validation.txt \ |
|
--max_seq_length 512 \ |
|
--per_device_train_batch_size 16 \ |
|
--learning_rate 1e-4 \ |
|
--num_train_epochs 40 \ |
|
--preprocessing_num_workers 96 \ |
|
--output_dir /mnt/datasets/bert-base-swedish-europeana-cased-512-dupe1-noadafactor-40e \ |
|
--save_steps 2500 \ |
|
--eval_steps 2500 \ |
|
--warmup_steps 10000 \ |
|
--line_by_line \ |
|
--pad_to_max_length |
|
``` |
|
|
|
The following plot shows the pretraining loss curve: |
|
|
|
![Training loss curve](stats/figures/pretraining_loss_swedish_europeana.png) |
|
|
|
# Acknowledgments |
|
|
|
Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC) program, previously known as |
|
TensorFlow Research Cloud (TFRC). Many thanks for providing access to the TRC ❤️ |
|
|
|
Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team, |
|
it is possible to download both cased and uncased models from their S3 storage 🤗 |
|
|