readme: add initial version
Browse files
README.md
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: multilingual
|
3 |
+
license: mit
|
4 |
+
widget:
|
5 |
+
- text: "and I cannot conceive the reafon why [MASK] hath"
|
6 |
+
- text: "Täkäläinen sanomalehdistö [MASK] erit - täin"
|
7 |
+
- text: "Det vore [MASK] häller nödvändigt att be"
|
8 |
+
- text: "Comme, à cette époque [MASK] était celle de la"
|
9 |
+
- text: "In [MASK] an atmosphärischen Nahrungsmitteln"
|
10 |
+
---
|
11 |
+
|
12 |
+
# Historic Language Models (HLMs)
|
13 |
+
|
14 |
+
## Languages
|
15 |
+
|
16 |
+
Our Historic Language Models Zoo contains support for the following languages - incl. their training data source:
|
17 |
+
|
18 |
+
| Language | Training data | Size
|
19 |
+
| -------- | ------------- | ----
|
20 |
+
| German | [Europeana](http://www.europeana-newspapers.eu/) | 13-28GB (filtered)
|
21 |
+
| French | [Europeana](http://www.europeana-newspapers.eu/) | 11-31GB (filtered)
|
22 |
+
| English | [British Library](https://data.bl.uk/digbks/db14.html) | 24GB (year filtered)
|
23 |
+
| Finnish | [Europeana](http://www.europeana-newspapers.eu/) | 1.2GB
|
24 |
+
| Swedish | [Europeana](http://www.europeana-newspapers.eu/) | 1.1GB
|
25 |
+
|
26 |
+
## Models
|
27 |
+
|
28 |
+
At the moment, the following models are available on the model hub:
|
29 |
+
|
30 |
+
| Model identifier | Model Hub link
|
31 |
+
| --------------------------------------------- | --------------------------------------------------------------------------
|
32 |
+
| `dbmdz/bert-base-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-multilingual-cased)
|
33 |
+
| `dbmdz/bert-base-historic-english-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-english-cased)
|
34 |
+
| `dbmdz/bert-base-finnish-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-finnish-europeana-cased)
|
35 |
+
| `dbmdz/bert-base-swedish-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-swedish-europeana-cased)
|
36 |
+
|
37 |
+
We also released smaller models for the multilingual model:
|
38 |
+
|
39 |
+
| Model identifier | Model Hub link
|
40 |
+
| ----------------------------------------------- | ---------------------------------------------------------------------------
|
41 |
+
| `dbmdz/bert-tiny-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-tiny-historic-multilingual-cased)
|
42 |
+
| `dbmdz/bert-mini-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-mini-historic-multilingual-cased)
|
43 |
+
| `dbmdz/bert-small-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-small-historic-multilingual-cased)
|
44 |
+
| `dbmdz/bert-medium-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-multilingual-cased)
|
45 |
+
|
46 |
+
**Notice**: We have released language models for Historic German and French trained on more noisier data earlier - see
|
47 |
+
[this repo](https://github.com/stefan-it/europeana-bert) for more information:
|
48 |
+
|
49 |
+
| Model identifier | Model Hub link
|
50 |
+
| --------------------------------------------- | --------------------------------------------------------------------------
|
51 |
+
| `dbmdz/bert-base-german-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-german-europeana-cased)
|
52 |
+
| `dbmdz/bert-base-french-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-french-europeana-cased)
|
53 |
+
|
54 |
+
# Corpora Stats
|
55 |
+
|
56 |
+
## German Europeana Corpus
|
57 |
+
|
58 |
+
We provide some statistics using different thresholds of ocr confidences, in order to shrink down the corpus size
|
59 |
+
and use less-noisier data:
|
60 |
+
|
61 |
+
| OCR confidence | Size
|
62 |
+
| -------------- | ----
|
63 |
+
| **0.60** | 28GB
|
64 |
+
| 0.65 | 18GB
|
65 |
+
| 0.70 | 13GB
|
66 |
+
|
67 |
+
For the final corpus we use a OCR confidence of 0.6 (28GB). The following plot shows a tokens per year distribution:
|
68 |
+
|
69 |
+
![German Europeana Corpus Stats](stats/figures/german_europeana_corpus_stats.png)
|
70 |
+
|
71 |
+
## French Europeana Corpus
|
72 |
+
|
73 |
+
Like German, we use different ocr confidence thresholds:
|
74 |
+
|
75 |
+
| OCR confidence | Size
|
76 |
+
| -------------- | ----
|
77 |
+
| 0.60 | 31GB
|
78 |
+
| 0.65 | 27GB
|
79 |
+
| **0.70** | 27GB
|
80 |
+
| 0.75 | 23GB
|
81 |
+
| 0.80 | 11GB
|
82 |
+
|
83 |
+
For the final corpus we use a OCR confidence of 0.7 (27GB). The following plot shows a tokens per year distribution:
|
84 |
+
|
85 |
+
![French Europeana Corpus Stats](stats/figures/french_europeana_corpus_stats.png)
|
86 |
+
|
87 |
+
## British Library Corpus
|
88 |
+
|
89 |
+
Metadata is taken from [here](https://data.bl.uk/digbks/DB21.html). Stats incl. year filtering:
|
90 |
+
|
91 |
+
| Years | Size
|
92 |
+
| ----------------- | ----
|
93 |
+
| ALL | 24GB
|
94 |
+
| >= 1800 && < 1900 | 24GB
|
95 |
+
|
96 |
+
We use the year filtered variant. The following plot shows a tokens per year distribution:
|
97 |
+
|
98 |
+
![British Library Corpus Stats](stats/figures/bl_corpus_stats.png)
|
99 |
+
|
100 |
+
## Finnish Europeana Corpus
|
101 |
+
|
102 |
+
| OCR confidence | Size
|
103 |
+
| -------------- | ----
|
104 |
+
| 0.60 | 1.2GB
|
105 |
+
|
106 |
+
The following plot shows a tokens per year distribution:
|
107 |
+
|
108 |
+
![Finnish Europeana Corpus Stats](stats/figures/finnish_europeana_corpus_stats.png)
|
109 |
+
|
110 |
+
## Swedish Europeana Corpus
|
111 |
+
|
112 |
+
| OCR confidence | Size
|
113 |
+
| -------------- | ----
|
114 |
+
| 0.60 | 1.1GB
|
115 |
+
|
116 |
+
The following plot shows a tokens per year distribution:
|
117 |
+
|
118 |
+
![Swedish Europeana Corpus Stats](stats/figures/swedish_europeana_corpus_stats.png)
|
119 |
+
|
120 |
+
## All Corpora
|
121 |
+
|
122 |
+
The following plot shows a tokens per year distribution of the complete training corpus:
|
123 |
+
|
124 |
+
![All Corpora Stats](stats/figures/all_corpus_stats.png)
|
125 |
+
|
126 |
+
# Multilingual Vocab generation
|
127 |
+
|
128 |
+
For the first attempt, we use the first 10GB of each pretraining corpus. We upsample both Finnish and Swedish to ~10GB.
|
129 |
+
The following tables shows the exact size that is used for generating a 32k and 64k subword vocabs:
|
130 |
+
|
131 |
+
| Language | Size
|
132 |
+
| -------- | ----
|
133 |
+
| German | 10GB
|
134 |
+
| French | 10GB
|
135 |
+
| English | 10GB
|
136 |
+
| Finnish | 9.5GB
|
137 |
+
| Swedish | 9.7GB
|
138 |
+
|
139 |
+
We then calculate the subword fertility rate and portion of `[UNK]`s over the following NER corpora:
|
140 |
+
|
141 |
+
| Language | NER corpora
|
142 |
+
| -------- | ------------------
|
143 |
+
| German | CLEF-HIPE, NewsEye
|
144 |
+
| French | CLEF-HIPE, NewsEye
|
145 |
+
| English | CLEF-HIPE
|
146 |
+
| Finnish | NewsEye
|
147 |
+
| Swedish | NewsEye
|
148 |
+
|
149 |
+
Breakdown of subword fertility rate and unknown portion per language for the 32k vocab:
|
150 |
+
|
151 |
+
| Language | Subword fertility | Unknown portion
|
152 |
+
| -------- | ------------------ | ---------------
|
153 |
+
| German | 1.43 | 0.0004
|
154 |
+
| French | 1.25 | 0.0001
|
155 |
+
| English | 1.25 | 0.0
|
156 |
+
| Finnish | 1.69 | 0.0007
|
157 |
+
| Swedish | 1.43 | 0.0
|
158 |
+
|
159 |
+
Breakdown of subword fertility rate and unknown portion per language for the 64k vocab:
|
160 |
+
|
161 |
+
| Language | Subword fertility | Unknown portion
|
162 |
+
| -------- | ------------------ | ---------------
|
163 |
+
| German | 1.31 | 0.0004
|
164 |
+
| French | 1.16 | 0.0001
|
165 |
+
| English | 1.17 | 0.0
|
166 |
+
| Finnish | 1.54 | 0.0007
|
167 |
+
| Swedish | 1.32 | 0.0
|
168 |
+
|
169 |
+
# Final pretraining corpora
|
170 |
+
|
171 |
+
We upsample Swedish and Finnish to ~27GB. The final stats for all pretraining corpora can be seen here:
|
172 |
+
|
173 |
+
| Language | Size
|
174 |
+
| -------- | ----
|
175 |
+
| German | 28GB
|
176 |
+
| French | 27GB
|
177 |
+
| English | 24GB
|
178 |
+
| Finnish | 27GB
|
179 |
+
| Swedish | 27GB
|
180 |
+
|
181 |
+
Total size is 130GB.
|
182 |
+
|
183 |
+
# Smaller multilingual models
|
184 |
+
|
185 |
+
Inspired by the ["Well-Read Students Learn Better: On the Importance of Pre-training Compact Models"](https://arxiv.org/abs/1908.08962)
|
186 |
+
paper, we train smaller models (different layers and hidden sizes), and report number of parameters and pre-training costs:
|
187 |
+
|
188 |
+
| Model (Layer / Hidden size) | Parameters | Pre-Training time
|
189 |
+
| --------------------------- | ----------: | ----------------------:
|
190 |
+
| hmBERT Tiny ( 2/128) | 4.58M | 4.3 sec / 1,000 steps
|
191 |
+
| hmBERT Mini ( 4/256) | 11.55M | 10.5 sec / 1,000 steps
|
192 |
+
| hmBERT Small ( 4/512) | 29.52M | 20.7 sec / 1,000 steps
|
193 |
+
| hmBERT Medium ( 8/512) | 42.13M | 35.0 sec / 1,000 steps
|
194 |
+
| hmBERT Base (12/768) | 110.62M | 80.0 sec / 1,000 steps
|
195 |
+
|
196 |
+
We then perform downstream evaluations on the multilingual [NewsEye](https://zenodo.org/record/4573313#.Ya3oVr-ZNzU) dataset:
|
197 |
+
|
198 |
+
![NewsEye hmBERT Evaluation](stats/figures/newseye-hmbert-evaluation.png)
|
199 |
+
|
200 |
+
# Pretraining
|
201 |
+
|
202 |
+
## Multilingual model - hmBERT Base
|
203 |
+
|
204 |
+
We train a multilingual BERT model using the 32k vocab with the official BERT implementation
|
205 |
+
on a v3-32 TPU using the following parameters:
|
206 |
+
|
207 |
+
```bash
|
208 |
+
python3 run_pretraining.py --input_file gs://histolectra/historic-multilingual-tfrecords/*.tfrecord \
|
209 |
+
--output_dir gs://histolectra/bert-base-historic-multilingual-cased \
|
210 |
+
--bert_config_file ./config.json \
|
211 |
+
--max_seq_length=512 \
|
212 |
+
--max_predictions_per_seq=75 \
|
213 |
+
--do_train=True \
|
214 |
+
--train_batch_size=128 \
|
215 |
+
--num_train_steps=3000000 \
|
216 |
+
--learning_rate=1e-4 \
|
217 |
+
--save_checkpoints_steps=100000 \
|
218 |
+
--keep_checkpoint_max=20 \
|
219 |
+
--use_tpu=True \
|
220 |
+
--tpu_name=electra-2 \
|
221 |
+
--num_tpu_cores=32
|
222 |
+
```
|
223 |
+
|
224 |
+
The following plot shows the pretraining loss curve:
|
225 |
+
|
226 |
+
![Training loss curve](stats/figures/pretraining_loss_historic-multilingual.png)
|
227 |
+
|
228 |
+
## Smaller multilingual models
|
229 |
+
|
230 |
+
We use the same parameters as used for training the base model.
|
231 |
+
|
232 |
+
### hmBERT Tiny
|
233 |
+
|
234 |
+
The following plot shows the pretraining loss curve for the tiny model:
|
235 |
+
|
236 |
+
![Training loss curve](stats/figures/pretraining_loss_hmbert-tiny.png)
|
237 |
+
|
238 |
+
### hmBERT Mini
|
239 |
+
|
240 |
+
The following plot shows the pretraining loss curve for the mini model:
|
241 |
+
|
242 |
+
![Training loss curve](stats/figures/pretraining_loss_hmbert-mini.png)
|
243 |
+
|
244 |
+
### hmBERT Small
|
245 |
+
|
246 |
+
The following plot shows the pretraining loss curve for the small model:
|
247 |
+
|
248 |
+
![Training loss curve](stats/figures/pretraining_loss_hmbert-small.png)
|
249 |
+
|
250 |
+
### hmBERT Medium
|
251 |
+
|
252 |
+
The following plot shows the pretraining loss curve for the medium model:
|
253 |
+
|
254 |
+
![Training loss curve](stats/figures/pretraining_loss_hmbert-medium.png)
|
255 |
+
|
256 |
+
## English model
|
257 |
+
|
258 |
+
The English BERT model - with texts from British Library corpus - was trained with the Hugging Face
|
259 |
+
JAX/FLAX implementation for 10 epochs (approx. 1M steps) on a v3-8 TPU, using the following command:
|
260 |
+
|
261 |
+
```bash
|
262 |
+
python3 run_mlm_flax.py --model_type bert \
|
263 |
+
--config_name /mnt/datasets/bert-base-historic-english-cased/ \
|
264 |
+
--tokenizer_name /mnt/datasets/bert-base-historic-english-cased/ \
|
265 |
+
--train_file /mnt/datasets/bl-corpus/bl_1800-1900_extracted.txt \
|
266 |
+
--validation_file /mnt/datasets/bl-corpus/english_validation.txt \
|
267 |
+
--max_seq_length 512 \
|
268 |
+
--per_device_train_batch_size 16 \
|
269 |
+
--learning_rate 1e-4 \
|
270 |
+
--num_train_epochs 10 \
|
271 |
+
--preprocessing_num_workers 96 \
|
272 |
+
--output_dir /mnt/datasets/bert-base-historic-english-cased-512-noadafactor-10e \
|
273 |
+
--save_steps 2500 \
|
274 |
+
--eval_steps 2500 \
|
275 |
+
--warmup_steps 10000 \
|
276 |
+
--line_by_line \
|
277 |
+
--pad_to_max_length
|
278 |
+
```
|
279 |
+
|
280 |
+
The following plot shows the pretraining loss curve:
|
281 |
+
|
282 |
+
![Training loss curve](stats/figures/pretraining_loss_historic_english.png)
|
283 |
+
|
284 |
+
## Finnish model
|
285 |
+
|
286 |
+
The BERT model - with texts from Finnish part of Europeana - was trained with the Hugging Face
|
287 |
+
JAX/FLAX implementation for 40 epochs (approx. 1M steps) on a v3-8 TPU, using the following command:
|
288 |
+
|
289 |
+
```bash
|
290 |
+
python3 run_mlm_flax.py --model_type bert \
|
291 |
+
--config_name /mnt/datasets/bert-base-finnish-europeana-cased/ \
|
292 |
+
--tokenizer_name /mnt/datasets/bert-base-finnish-europeana-cased/ \
|
293 |
+
--train_file /mnt/datasets/hlms/extracted_content_Finnish_0.6.txt \
|
294 |
+
--validation_file /mnt/datasets/hlms/finnish_validation.txt \
|
295 |
+
--max_seq_length 512 \
|
296 |
+
--per_device_train_batch_size 16 \
|
297 |
+
--learning_rate 1e-4 \
|
298 |
+
--num_train_epochs 40 \
|
299 |
+
--preprocessing_num_workers 96 \
|
300 |
+
--output_dir /mnt/datasets/bert-base-finnish-europeana-cased-512-dupe1-noadafactor-40e \
|
301 |
+
--save_steps 2500 \
|
302 |
+
--eval_steps 2500 \
|
303 |
+
--warmup_steps 10000 \
|
304 |
+
--line_by_line \
|
305 |
+
--pad_to_max_length
|
306 |
+
```
|
307 |
+
|
308 |
+
The following plot shows the pretraining loss curve:
|
309 |
+
|
310 |
+
![Training loss curve](stats/figures/pretraining_loss_finnish_europeana.png)
|
311 |
+
|
312 |
+
## Swedish model
|
313 |
+
|
314 |
+
The BERT model - with texts from Swedish part of Europeana - was trained with the Hugging Face
|
315 |
+
JAX/FLAX implementation for 40 epochs (approx. 660K steps) on a v3-8 TPU, using the following command:
|
316 |
+
|
317 |
+
```bash
|
318 |
+
python3 run_mlm_flax.py --model_type bert \
|
319 |
+
--config_name /mnt/datasets/bert-base-swedish-europeana-cased/ \
|
320 |
+
--tokenizer_name /mnt/datasets/bert-base-swedish-europeana-cased/ \
|
321 |
+
--train_file /mnt/datasets/hlms/extracted_content_Swedish_0.6.txt \
|
322 |
+
--validation_file /mnt/datasets/hlms/swedish_validation.txt \
|
323 |
+
--max_seq_length 512 \
|
324 |
+
--per_device_train_batch_size 16 \
|
325 |
+
--learning_rate 1e-4 \
|
326 |
+
--num_train_epochs 40 \
|
327 |
+
--preprocessing_num_workers 96 \
|
328 |
+
--output_dir /mnt/datasets/bert-base-swedish-europeana-cased-512-dupe1-noadafactor-40e \
|
329 |
+
--save_steps 2500 \
|
330 |
+
--eval_steps 2500 \
|
331 |
+
--warmup_steps 10000 \
|
332 |
+
--line_by_line \
|
333 |
+
--pad_to_max_length
|
334 |
+
```
|
335 |
+
|
336 |
+
The following plot shows the pretraining loss curve:
|
337 |
+
|
338 |
+
![Training loss curve](stats/figures/pretraining_loss_swedish_europeana.png)
|
339 |
+
|
340 |
+
# Acknowledgments
|
341 |
+
|
342 |
+
Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC) program, previously known as
|
343 |
+
TensorFlow Research Cloud (TFRC). Many thanks for providing access to the TRC ❤️
|
344 |
+
|
345 |
+
Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team,
|
346 |
+
it is possible to download both cased and uncased models from their S3 storage 🤗
|