Edit model card

donut_experiment_bayesian_trial_9

This model is a fine-tuned version of naver-clova-ix/donut-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5922
  • Bleu: 0.0587
  • Precisions: [0.735655737704918, 0.6310904872389791, 0.5668449197860963, 0.5173501577287066]
  • Brevity Penalty: 0.0967
  • Length Ratio: 0.2998
  • Translation Length: 488
  • Reference Length: 1628
  • Cer: 0.7688
  • Wer: 0.8559

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.393489197537874e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Precisions Brevity Penalty Length Ratio Translation Length Reference Length Cer Wer
1.1982 1.0 253 0.7300 0.0555 [0.6828282828282828, 0.5616438356164384, 0.5091863517060368, 0.45987654320987653] 0.1014 0.3041 495 1628 0.7812 0.8659
0.5755 2.0 506 0.5922 0.0587 [0.735655737704918, 0.6310904872389791, 0.5668449197860963, 0.5173501577287066] 0.0967 0.2998 488 1628 0.7688 0.8559

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.1.0
  • Datasets 2.18.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
202M params
Tensor type
I64
·
F32
·
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for davelotito/donut_experiment_bayesian_trial_9

Finetuned
(368)
this model