Datasets:
File size: 1,537 Bytes
e11f582 1b15ed6 b153d02 1b15ed6 c908dab 1b15ed6 e11f582 1b15ed6 3a2da7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
---
license: cc
configs:
- config_name: default
data_files:
- split: phase_1
path: "phase_1.json"
- split: phase_2
path: "phase_2.json"
task_categories:
- translation
language:
- en
- cs
tags:
- post editing
- quality
size_categories:
- 1K<n<10K
---
# Neural Machine Translation Quality and Post-Editing Performance
This is a repository for an experiment relating NMT quality and post-editing efforts, presented at EMNLP2021 ([presentation recording](https://youtu.be/rCuoUbmJ5Uk)).
Please cite the following [paper](https://aclanthology.org/2021.emnlp-main.801/) when you use this research:
```
@inproceedings{zouhar2021neural,
title={Neural Machine Translation Quality and Post-Editing Performance},
author={Zouhar, Vil{\'e}m and Popel, Martin and Bojar, Ond{\v{r}}ej and Tamchyna, Ale{\v{s}}},
booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing},
pages={10204--10214},
year={2021},
url={https://aclanthology.org/2021.emnlp-main.801/}
}
```
You can [access the data on huggingface](https://huggingface.co/datasets/zouharvi/nmt-pe-effects):
```python3
from datasets import load_dataset
data_p1 = load_dataset("zouharvi/nmt-pe-effects", "phase_1")
data_p2 = load_dataset("zouharvi/nmt-pe-effects", "phase_2")
```
The first phase is the main one where we can see the effect of NMT quality on post-editing time.
The second phase is to estimate the quality of the first post-editing round.
The [code is also public](https://github.com/ufal/nmt-pe-effects-2021). |