File size: 1,537 Bytes
e11f582
 
1b15ed6
b153d02
 
 
 
 
 
1b15ed6
 
 
 
 
 
 
c908dab
1b15ed6
 
e11f582
1b15ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a2da7c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
---
license: cc
configs:
- config_name: default
  data_files:
  - split: phase_1
    path: "phase_1.json"
  - split: phase_2
    path: "phase_2.json"
task_categories:
- translation
language:
- en
- cs
tags:
- post editing
- quality
size_categories:
- 1K<n<10K
---

# Neural Machine Translation Quality and Post-Editing Performance

This is a repository for an experiment relating NMT quality and post-editing efforts, presented at EMNLP2021 ([presentation recording](https://youtu.be/rCuoUbmJ5Uk)).
Please cite the following [paper](https://aclanthology.org/2021.emnlp-main.801/) when you use this research:

```
@inproceedings{zouhar2021neural,
  title={Neural Machine Translation Quality and Post-Editing Performance},
  author={Zouhar, Vil{\'e}m and Popel, Martin and Bojar, Ond{\v{r}}ej and Tamchyna, Ale{\v{s}}},
  booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing},
  pages={10204--10214},
  year={2021},
  url={https://aclanthology.org/2021.emnlp-main.801/}
}
```

You can [access the data on huggingface](https://huggingface.co/datasets/zouharvi/nmt-pe-effects):
```python3
from datasets import load_dataset
data_p1 = load_dataset("zouharvi/nmt-pe-effects", "phase_1")
data_p2 = load_dataset("zouharvi/nmt-pe-effects", "phase_2")
```

The first phase is the main one where we can see the effect of NMT quality on post-editing time.
The second phase is to estimate the quality of the first post-editing round.

The [code is also public](https://github.com/ufal/nmt-pe-effects-2021).