File size: 5,234 Bytes
b7accb9 c973ce8 b7accb9 c973ce8 4879320 e389fcd c973ce8 d438932 b7accb9 d438932 c973ce8 b7accb9 10eee64 b7accb9 10eee64 b7accb9 c973ce8 d438932 c973ce8 b7accb9 c973ce8 d438932 b7accb9 d438932 c973ce8 d438932 c973ce8 d438932 b7accb9 d438932 c973ce8 d438932 c973ce8 e40859e 2cbb899 d438932 2cbb899 d438932 2cbb899 d438932 c973ce8 c802914 c973ce8 e389fcd c973ce8 f7186be c973ce8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import functools as ft
import itertools as it
import collections as cl
from pathlib import Path
from dataclasses import dataclass, asdict
from urllib.parse import ParseResult, urlparse, urlunparse
import pandas as pd
from datasets import (
Split,
Image,
Value,
Features,
Sequence,
ClassLabel,
DatasetInfo,
SplitGenerator,
GeneratorBasedBuilder,
)
from shapely.wkt import loads
__version__ = '20230327-1214'
__citation__ = '''
@inproceedings{iclr-2023,
author = {White, Jerome and Agrawal, Chandan and Ojha, Anmol and
Agnihotri, Apoorv and Sharma, Makkunda and Doshi,
Jigar},
title = {{BOLLWM}: A real-world dataset for bollworm pest monitoring
from cotton fields in {India}},
booktitle = {International Conference on Learning Representations},
year = {2023},
series = {ICLR},
publisher = {Workshop on Practical Machine Learning for Developing
Countries},
doi = {10.48550/arXiv.2304.00763},
}
'''
SplitInfo = cl.namedtuple('SplitInfo', 'dtype, basename, split')
Payload = cl.namedtuple('Payload', 'source, target, df')
#
#
#
def readsp(path, split):
return (pd
.read_csv(path, compression='gzip')
.query(f'split == "{split}"'))
#
#
#
@ft.singledispatch
def bucket2virtual(url):
raise TypeError(type(url))
@bucket2virtual.register
def _(url: ParseResult):
netloc = '.'.join((
url.netloc,
url.scheme,
'ap-south-1',
'amazonaws',
'com',
))
return urlunparse(url._replace(scheme='https', netloc=netloc))
@bucket2virtual.register
def _(url: str):
return bucket2virtual(urlparse(url))
#
#
#
@dataclass
class SplitPayload:
split: str
metadata: Path
images: dict
def __iter__(self):
df = readsp(self.metadata, self.split)
for (i, g) in df.groupby('url', sort=False):
source = urlparse(i)
target = Path(self.images[i])
yield Payload(source, target, g)
#
#
#
class SplitManager:
_splits = tuple(it.starmap(SplitInfo, (
(Split.TRAIN, 'dev', 'train'),
(Split.VALIDATION, 'dev', 'val'),
(Split.TEST, 'test', 'test'),
)))
@property
def labels(self):
path = bucket2virtual(self.metaname('dev'))
df = pd.read_csv(path, compression='gzip')
yield from df['label'].dropna().unique()
def __init__(self, bucket):
self.bucket = bucket
self.path = Path('metadata', __version__)
def __call__(self, dl_manager):
for i in self._splits:
name = self.metaname(i.basename)
info = Path(dl_manager.download(bucket2virtual(name)))
images = self.images(i.split, info)
ipaths = dl_manager.download(dict(images))
payload = SplitPayload(i.split, info, ipaths)
yield SplitGenerator(name=i.dtype, gen_kwargs=asdict(payload))
@staticmethod
def images(split, info):
df = readsp(info, split)
for i in df['url'].unique():
yield (i, bucket2virtual(i))
def metaname(self, split):
path = self.path.joinpath(split).with_suffix('.csv.gz')
return self.bucket._replace(path=str(path))
#
#
#
class ExampleManager:
# _Pest = cl.namedtuple('_Pest', 'label, geometry')
# _Feature = cl.namedtuple('_Feature', 'image, pests')
@staticmethod
def features(labels):
return Features({
'image': Image(),
'pests': Sequence({
'label': ClassLabel(names=labels),
'geometry': Value('binary'),
}),
})
@staticmethod
def pests(df):
if 'geometry' in df.columns:
for i in df.dropna().itertuples(index=False):
geometry = loads(i.geometry)
yield {
'label': i.label,
'geometry': geometry.wkb,
}
def __init__(self, payload):
self.payload = payload
def __iter__(self):
for i in self.payload:
key = urlunparse(i.source)
with i.target.open('rb') as fp:
raw = fp.read()
value = {
'image': {
'path': i.target,
'bytes': raw,
},
'pests': list(self.pests(i.df)),
}
yield (key, value)
#
#
#
class PestManagementOpendata(GeneratorBasedBuilder):
_bucket = urlparse('s3://wadhwaniai-agri-opendata')
def _info(self):
data = SplitManager(self._bucket)
labels = sorted(data.labels)
features = ExampleManager.features(labels)
return DatasetInfo(
homepage='https://github.com/WadhwaniAI/pest-management-opendata',
citation=__citation__,
# description=_DESCRIPTION,
license='CC-BY 4.0',
features=features,
)
def _split_generators(self, dl_manager):
splits = SplitManager(self._bucket)
return list(splits(dl_manager))
def _generate_examples(self, **kwargs):
payload = SplitPayload(**kwargs)
examples = ExampleManager(payload)
yield from examples
|