jerome-ai commited on
Commit
d438932
1 Parent(s): 2cbb899

Support for streaming

Browse files

Use "virtual-hosted–style" access to download images and metadata;
allowing the Hugging Face download manager to operate in either
regular or streaming mode.

Files changed (1) hide show
  1. pest-management-opendata.py +71 -51
pest-management-opendata.py CHANGED
@@ -4,9 +4,6 @@ from pathlib import Path
4
  from dataclasses import dataclass, asdict
5
  from urllib.parse import urlparse, urlunparse
6
 
7
- import cv2
8
- import boto3
9
- import numpy as np
10
  import pandas as pd
11
  import awswrangler as wr
12
  from datasets import (
@@ -25,19 +22,55 @@ from shapely.wkt import loads
25
  __version__ = '20220912-2056'
26
 
27
  SplitInfo = cl.namedtuple('SplitInfo', 'dtype, basename, split')
 
 
 
 
 
 
28
 
29
  @dataclass
30
  class SplitPayload:
31
  split: str
32
- path: Path
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
- def __post_init__(self):
35
- self.path = Path(self.path)
36
 
37
- def to_frame(self):
38
- return (pd
39
- .read_csv(self.path, compression='gzip')
40
- .query(f'split == "{self.split}"'))
 
 
 
 
 
 
 
 
41
 
42
  #
43
  #
@@ -49,20 +82,10 @@ class SplitManager:
49
  (Split.TEST, 'test', 'test'),
50
  )))
51
 
52
- @staticmethod
53
- def custom_download(url, path):
54
- remote = urlparse(url)
55
- name = Path(remote.path)
56
- if name.is_absolute():
57
- name = name.relative_to(name.parents[-1])
58
-
59
- s3 = boto3.client(remote.scheme)
60
- s3.download_file(remote.netloc, str(name), path)
61
-
62
  @property
63
  def labels(self):
64
- path = self.url('dev')
65
- df = wr.s3.read_csv(path, compression='gzip')
66
  yield from df['label'].dropna().unique()
67
 
68
  def __init__(self, bucket):
@@ -71,22 +94,31 @@ class SplitManager:
71
 
72
  def __call__(self, dl_manager):
73
  for i in self._splits:
74
- url = self.url(i.basename)
75
- path = dl_manager.download_custom(url, self.custom_download)
76
- payload = SplitPayload(i.split, path)
 
 
 
77
 
 
78
  yield SplitGenerator(name=i.dtype, gen_kwargs=asdict(payload))
79
 
80
- def url(self, split):
 
 
 
 
 
 
 
81
  path = self.path.joinpath(split).with_suffix('.csv.gz')
82
- source = self.bucket._replace(path=str(path))
83
- return urlunparse(source)
84
 
85
  #
86
  #
87
  #
88
  class ExampleManager:
89
- _decode_flags = cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION
90
  # _Pest = cl.namedtuple('_Pest', 'label, geometry')
91
  # _Feature = cl.namedtuple('_Feature', 'image, pests')
92
 
@@ -114,31 +146,19 @@ class ExampleManager:
114
  self.payload = payload
115
 
116
  def __iter__(self):
117
- df = self.payload.to_frame()
118
- for (i, g) in df.groupby('url', sort=False):
 
 
119
  value = {
120
- 'image': self.load(urlparse(i)),
121
- 'pests': list(self.pests(g)),
 
 
 
122
  }
123
 
124
- yield (i, value)
125
-
126
- def load(self, url):
127
- path = Path(url.path)
128
- if path.is_absolute():
129
- (*_, root) = path.parents
130
- path = path.relative_to(root)
131
-
132
- data = (boto3
133
- .resource(url.scheme)
134
- .Bucket(url.netloc)
135
- .Object(str(path))
136
- .get()
137
- .get('Body')
138
- .read())
139
- image = np.asarray(bytearray(data))
140
-
141
- return cv2.imdecode(image, self._decode_flags)
142
 
143
  #
144
  #
 
4
  from dataclasses import dataclass, asdict
5
  from urllib.parse import urlparse, urlunparse
6
 
 
 
 
7
  import pandas as pd
8
  import awswrangler as wr
9
  from datasets import (
 
22
  __version__ = '20220912-2056'
23
 
24
  SplitInfo = cl.namedtuple('SplitInfo', 'dtype, basename, split')
25
+ Payload = cl.namedtuple('Payload', 'source, target, df')
26
+
27
+ def readsp(path, split):
28
+ return (pd
29
+ .read_csv(path, compression='gzip')
30
+ .query(f'split == "{split}"'))
31
 
32
  @dataclass
33
  class SplitPayload:
34
  split: str
35
+ metadata: Path
36
+ images: dict
37
+
38
+ def __iter__(self):
39
+ df = readsp(self.metadata, self.split)
40
+ for (i, g) in df.groupby('url', sort=False):
41
+ source = urlparse(i)
42
+ target = Path(self.images[i])
43
+
44
+ yield Payload(source, target, g)
45
+
46
+ #
47
+ #
48
+ #
49
+ class AmazonStorageStyleAccess:
50
+ def __init__(self, url):
51
+ self.url = url
52
+
53
+ def __str__(self):
54
+ return urlunparse(self.url)
55
+
56
+ class StandardStyleAccess(AmazonStorageStyleAccess):
57
+ pass
58
 
59
+ class VirtualStyleAccess(AmazonStorageStyleAccess):
60
+ _region = 'ap-south-1'
61
 
62
+ def __init__(self, url):
63
+ parts = [
64
+ url.netloc,
65
+ url.scheme,
66
+ self._region,
67
+ 'amazonaws',
68
+ 'com',
69
+ ]
70
+ netloc = '.'.join(parts)
71
+ url = url._replace(scheme='https', netloc=netloc)
72
+
73
+ super().__init__(url)
74
 
75
  #
76
  #
 
82
  (Split.TEST, 'test', 'test'),
83
  )))
84
 
 
 
 
 
 
 
 
 
 
 
85
  @property
86
  def labels(self):
87
+ path = StandardStyleAccess(self.metaname('dev'))
88
+ df = wr.s3.read_csv(str(path), compression='gzip')
89
  yield from df['label'].dropna().unique()
90
 
91
  def __init__(self, bucket):
 
94
 
95
  def __call__(self, dl_manager):
96
  for i in self._splits:
97
+ name = self.metaname(i.basename)
98
+ url = VirtualStyleAccess(name)
99
+ info = Path(dl_manager.download(str(url)))
100
+
101
+ images = self.images(i.split, info)
102
+ ipaths = dl_manager.download(dict(images))
103
 
104
+ payload = SplitPayload(i.split, info, ipaths)
105
  yield SplitGenerator(name=i.dtype, gen_kwargs=asdict(payload))
106
 
107
+ @staticmethod
108
+ def images(split, info):
109
+ df = readsp(info, split)
110
+ for i in df['url'].unique():
111
+ url = VirtualStyleAccess(urlparse(i))
112
+ yield (i, str(url))
113
+
114
+ def metaname(self, split):
115
  path = self.path.joinpath(split).with_suffix('.csv.gz')
116
+ return self.bucket._replace(path=str(path))
 
117
 
118
  #
119
  #
120
  #
121
  class ExampleManager:
 
122
  # _Pest = cl.namedtuple('_Pest', 'label, geometry')
123
  # _Feature = cl.namedtuple('_Feature', 'image, pests')
124
 
 
146
  self.payload = payload
147
 
148
  def __iter__(self):
149
+ for i in self.payload:
150
+ key = urlunparse(i.source)
151
+ with i.target.open('rb') as fp:
152
+ raw = fp.read()
153
  value = {
154
+ 'image': {
155
+ 'path': i.target,
156
+ 'bytes': raw,
157
+ },
158
+ 'pests': list(self.pests(i.df)),
159
  }
160
 
161
+ yield (key, value)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162
 
163
  #
164
  #