jerome-ai commited on
Commit
c973ce8
1 Parent(s): 328c433

Initial script for bollworm data

Browse files
Files changed (1) hide show
  1. pest_management_opendata.py +170 -0
pest_management_opendata.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import itertools as it
2
+ import collections as cl
3
+ from base64 import b64encode
4
+ from pathlib import Path
5
+ from dataclasses import dataclass, asdict
6
+ from urllib.parse import urlparse, urlunparse
7
+
8
+ import cv2
9
+ import boto3
10
+ import pandas as pd
11
+ import awswrangler as wr
12
+ from datasets import (
13
+ Split,
14
+ Image,
15
+ Value,
16
+ Features,
17
+ Sequence,
18
+ ClassLabel,
19
+ DatasetInfo,
20
+ SplitGenerator,
21
+ GeneratorBasedBuilder,
22
+ )
23
+ from shapely.wkt import loads
24
+
25
+ __version__ = '20220912-2056'
26
+
27
+ SplitInfo = cl.namedtuple('SplitInfo', 'dtype, basename, split')
28
+
29
+ @dataclass
30
+ class SplitPayload:
31
+ split: str
32
+ path: Path
33
+
34
+ def __post_init__(self):
35
+ self.path = Path(self.path)
36
+
37
+ def to_frame(self):
38
+ return (pd
39
+ .read_csv(self.path, compression='gzip')
40
+ .query(f'split == "{self.split}"'))
41
+
42
+ #
43
+ #
44
+ #
45
+ class SplitManager:
46
+ _splits = tuple(it.starmap(SplitInfo, (
47
+ (Split.TRAIN, 'dev', 'train'),
48
+ (Split.VALIDATION, 'dev', 'val'),
49
+ (Split.TEST, 'test', 'test'),
50
+ )))
51
+
52
+ @staticmethod
53
+ def custom_download(url, path):
54
+ remote = urlparse(url)
55
+ name = Path(remote.path)
56
+ if name.is_absolute():
57
+ name = name.relative_to(name.parents[-1])
58
+
59
+ s3 = boto3.client(remote.scheme, region_name='ap-south-1')
60
+ s3.download_file(remote.netloc, str(name), path)
61
+
62
+ @property
63
+ def labels(self):
64
+ df = wr.s3.read_csv(self.url('dev'), compression='gzip')
65
+ yield from df['label'].dropna().unique()
66
+
67
+ def __init__(self, bucket):
68
+ self.bucket = bucket
69
+ self.path = Path('metadata', __version__)
70
+
71
+ def __call__(self, dl_manager):
72
+ for i in self._splits:
73
+ url = self.url(i.basename)
74
+ path = dl_manager.download_custom(url, self.custom_download)
75
+ payload = SplitPayload(i.split, path)
76
+
77
+ yield SplitGenerator(name=i.dtype, gen_kwargs=asdict(payload))
78
+
79
+ def url(self, split):
80
+ path = self.path.joinpath(split).with_suffix('.csv.gz')
81
+ source = self.bucket._replace(path=path)
82
+
83
+ return urlunparse(source)
84
+
85
+ #
86
+ #
87
+ #
88
+ class ExampleManager:
89
+ _decode_flags = cv2.IMREAD_COLOR | cv.IMREAD_IGNORE_ORIENTATION
90
+ # _Pest = cl.namedtuple('_Pest', 'label, geometry')
91
+ # _Feature = cl.namedtuple('_Feature', 'image, pests')
92
+
93
+ @staticmethod
94
+ def features(labels):
95
+ return Features({
96
+ 'image': Image(),
97
+ 'pests': Sequence({
98
+ 'label': ClassLabel(names=labels),
99
+ 'geometry': Value('binary'),
100
+ }),
101
+ })
102
+
103
+ @staticmethod
104
+ def pests(df):
105
+ for i in df.dropna().itertuples(index=False):
106
+ geometry = loads(i.geometry)
107
+ yield {
108
+ 'label': i.label,
109
+ 'geometry': geometry.wkb,
110
+ }
111
+
112
+ @staticmethod
113
+ def load(url):
114
+ path = Path(url.path)
115
+ if path.is_absolute():
116
+ (*_, root) = path.parents
117
+ path = path.relative_to(root)
118
+
119
+ data = (boto3
120
+ .resource(url.scheme)
121
+ .Bucket(url.netloc)
122
+ .Object(str(path))
123
+ .get()
124
+ .get('Body')
125
+ .read())
126
+ image = np.asarray(bytearray(data))
127
+
128
+ return cv2.imdecode(image, self._decode_flags)
129
+
130
+ def __init__(self, payload):
131
+ self.payload = payload
132
+
133
+ def __iter__(self):
134
+ df = self.payload.to_frame()
135
+ for (i, g) in df.groupby('image', sort=False):
136
+ image = self.load(urlparse(i))
137
+ pests = self.pests(g)
138
+
139
+ yield {
140
+ 'image': image,
141
+ 'pests': list(pests),
142
+ }
143
+
144
+ #
145
+ #
146
+ #
147
+ class WadhwaniBollwormData(GeneratorBasedBuilder):
148
+ _bucket = urlparse('s3://wadhwaniai-agri-opendata')
149
+
150
+ def _info(self):
151
+ data = SplitManager(self._bucket)
152
+ labels = sorted(data.labels)
153
+ features = ExampleManager.features(labels)
154
+
155
+ return DatasetInfo(
156
+ homepage='https://github.com/WadhwaniAI/pest-management-opendata',
157
+ # citation=_CITATION,
158
+ # description=_DESCRIPTION,
159
+ license='CC-BY 4.0',
160
+ features=features,
161
+ )
162
+
163
+ def _split_generators(self, dl_manager):
164
+ splits = SplitManager(self._bucket)
165
+ return list(splits)
166
+
167
+ def _generate_examples(self, **kwargs):
168
+ payload = SplitPayload(**kwargs)
169
+ examples = ExampleManager(payload)
170
+ yield from examples