code
stringlengths
18
4.5k
signature
stringlengths
7
879
docstring
stringlengths
3
4.31k
loss_without_docstring
float64
1.08
2.36k
loss_with_docstring
float64
1.07
1.49k
factor
float64
1
23.3
rendered
stringlengths
91
5.22k
quality_prob
float64
0.5
0.97
learning_prob
float64
0.5
1
if Class is True: Class = self.__class__ if scope is True: scope = STRUCTURESCOPE structural = Class is not None and issubclass(Class,AbstractStructureElement) if reverse: order = reversed descendindex = -1 else: order = lambda x: x #pylint: disable=redefined-variable-type descendindex = 0 child = self parent = self.parent while parent: #pylint: disable=too-many-nested-blocks if len(parent) > 1: returnnext = False for e in order(parent): if e is child: #we found the current item, next item will be the one to return returnnext = True elif returnnext and e.auth and not isinstance(e,AbstractAnnotationLayer) and (not structural or (structural and (not isinstance(e,(AbstractTokenAnnotation,TextContent)) ) )): if structural and isinstance(e,Correction): if not list(e.select(AbstractStructureElement)): #skip-over non-structural correction continue if Class is None or (isinstance(Class,tuple) and (any(isinstance(e,C) for C in Class))) or isinstance(e,Class): return e else: #this is not yet the element of the type we are looking for, we are going to descend again in the very leftmost (rightmost if reversed) branch only while e.data: e = e.data[descendindex] if not isinstance(e, AbstractElement): return None #we've gone too far if e.auth and not isinstance(e,AbstractAnnotationLayer): if Class is None or (isinstance(Class,tuple) and (any(isinstance(e,C) for C in Class))) or isinstance(e,Class): return e else: #descend deeper continue return None #generational iteration child = parent if scope is not None and child.__class__ in scope: #you shall not pass! break parent = parent.parent return None
def next(self, Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned. Arguments: * ``Class``: The class to select; any python class subclassed off `'AbstractElement``, may also be a tuple of multiple classes. Set to ``True`` to constrain to the same class as that of the current instance, set to ``None`` to not constrain at all * ``scope``: A list of classes which are never crossed looking for a next element. Set to ``True`` to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to ``None`` to not constrain at all.
5.550529
5.39329
1.029155
def next(self, Class=True, scope=True, reverse=False): """ Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned. Arguments: * ``Class``: The class to select; any python class subclassed off `'AbstractElement``, may also be a tuple of multiple classes. Set to ``True`` to constrain to the same class as that of the current instance, set to ``None`` to not constrain at all * ``scope``: A list of classes which are never crossed looking for a next element. Set to ``True`` to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to ``None`` to not constrain at all. """ if Class is True: Class = self.__class__ if scope is True: scope = STRUCTURESCOPE structural = Class is not None and issubclass(Class,AbstractStructureElement) if reverse: order = reversed descendindex = -1 else: order = lambda x: x #pylint: disable=redefined-variable-type descendindex = 0 child = self parent = self.parent while parent: #pylint: disable=too-many-nested-blocks if len(parent) > 1: returnnext = False for e in order(parent): if e is child: #we found the current item, next item will be the one to return returnnext = True elif returnnext and e.auth and not isinstance(e,AbstractAnnotationLayer) and (not structural or (structural and (not isinstance(e,(AbstractTokenAnnotation,TextContent)) ) )): if structural and isinstance(e,Correction): if not list(e.select(AbstractStructureElement)): #skip-over non-structural correction continue if Class is None or (isinstance(Class,tuple) and (any(isinstance(e,C) for C in Class))) or isinstance(e,Class): return e else: #this is not yet the element of the type we are looking for, we are going to descend again in the very leftmost (rightmost if reversed) branch only while e.data: e = e.data[descendindex] if not isinstance(e, AbstractElement): return None #we've gone too far if e.auth and not isinstance(e,AbstractAnnotationLayer): if Class is None or (isinstance(Class,tuple) and (any(isinstance(e,C) for C in Class))) or isinstance(e,Class): return e else: #descend deeper continue return None #generational iteration child = parent if scope is not None and child.__class__ in scope: #you shall not pass! break parent = parent.parent return None
0.785648
0.509093
depth = 0 e = self while True: if e.parent: e = e.parent #pylint: disable=redefined-variable-type else: #no parent, breaking return False if isinstance(e,AbstractStructureElement) or isinstance(e,AbstractSubtokenAnnotation): depth += 1 if depth == 2: return e return False
def finddefaultreference(self)
Find the default reference for text offsets: The parent of the current textcontent's parent (counting only Structure Elements and Subtoken Annotation Elements) Note: This returns not a TextContent element, but its parent. Whether the textcontent actually exists is checked later/elsewhere
6.768433
4.726374
1.432056
def finddefaultreference(self): """ Find the default reference for text offsets: The parent of the current textcontent's parent (counting only Structure Elements and Subtoken Annotation Elements) Note: This returns not a TextContent element, but its parent. Whether the textcontent actually exists is checked later/elsewhere """ depth = 0 e = self while True: if e.parent: e = e.parent #pylint: disable=redefined-variable-type else: #no parent, breaking return False if isinstance(e,AbstractStructureElement) or isinstance(e,AbstractSubtokenAnnotation): depth += 1 if depth == 2: return e return False
0.659378
0.54468
l = [] for e in self.data: l += e.items() return l
def items(self)
Returns a depth-first flat list of all items in the document
6.009556
5.584836
1.076049
def items(self): """ Returns a depth-first flat list of all items in the document """ l = [] for e in self.data: l += e.items() return l
0.716281
0.523786
finalsolution = None bestscore = None for solution in self: if bestscore == None: bestscore = solution.score() finalsolution = solution elif self.minimize: score = solution.score() if score < bestscore: bestscore = score finalsolution = solution elif not self.minimize: score = solution.score() if score > bestscore: bestscore = score finalsolution = solution return finalsolution
def searchbest(self)
Returns the single best result (if multiple have the same score, the first match is returned)
2.211629
2.082187
1.062166
def searchbest(self): """ Returns the single best result (if multiple have the same score, the first match is returned) """ finalsolution = None bestscore = None for solution in self: if bestscore == None: bestscore = solution.score() finalsolution = solution elif self.minimize: score = solution.score() if score < bestscore: bestscore = score finalsolution = solution elif not self.minimize: score = solution.score() if score > bestscore: bestscore = score finalsolution = solution return finalsolution
0.729026
0.514217
solutions = deque([], n) for solution in self: solutions.append(solution) return solutions
def searchlast(self,n=10)
Return the last n results (or possibly less if not found). Note that the last results are not necessarily the best ones! Depending on the search type.
9.863415
8.865089
1.112613
def searchlast(self,n=10): """ Return the last n results (or possibly less if not found). Note that the last results are not necessarily the best ones! Depending on the search type. """ solutions = deque([], n) for solution in self: solutions.append(solution) return solutions
0.639708
0.501038
l = [] for word_id, senses,distance in self: for sense, confidence in senses: if not sense in l: l.append(sense) if bestonly: break return l
def senses(self, bestonly=False)
Returns a list of all predicted senses
5.897015
5.76519
1.022866
def senses(self, bestonly=False): """ Returns a list of all predicted senses """ l = [] for word_id, senses,distance in self: for sense, confidence in senses: if not sense in l: l.append(sense) if bestonly: break return l
0.62681
0.507385
if self.children: return sum( ( c.size() for c in self.children.values() ) ) + 1 else: return 1
def size(self)
Size is number of nodes under the trie, including the current node
3.820153
3.063506
1.246987
def size(self): """ Size is number of nodes under the trie, including the current node """ if self.children: return sum( ( c.size() for c in self.children.values() ) ) + 1 else: return 1
0.534066
0.596051
global namespaces return self.tree.xpath(expression, namespaces=namespaces)
def xpath(self, expression)
Executes an xpath expression using the correct namespaces
8.032832
6.176901
1.300463
def xpath(self, expression): """ Executes an xpath expression using the correct namespaces """ global namespaces return self.tree.xpath(expression, namespaces=namespaces)
0.585931
0.84241
''' Given a function to map from an ID to an underlying object, and a function to map from an underlying object to the concrete GraphQLObjectType it corresponds to, constructs a `Node` interface that objects can implement, and a field config for a `node` root field. If the type_resolver is omitted, object resolution on the interface will be handled with the `isTypeOf` method on object types, as with any GraphQL interface without a provided `resolveType` method. ''' node_interface = GraphQLInterfaceType( 'Node', description='An object with an ID', fields=lambda: OrderedDict(( ('id', GraphQLField( GraphQLNonNull(GraphQLID), description='The id of the object.', resolver=id_resolver, )), )), resolve_type=type_resolver ) node_field = GraphQLField( node_interface, description='Fetches an object given its ID', args=OrderedDict(( ('id', GraphQLArgument( GraphQLNonNull(GraphQLID), description='The ID of an object' )), )), resolver=lambda obj, args, *_: id_fetcher(args.get('id'), *_) ) return node_interface, node_field
def node_definitions(id_fetcher, type_resolver=None, id_resolver=None)
Given a function to map from an ID to an underlying object, and a function to map from an underlying object to the concrete GraphQLObjectType it corresponds to, constructs a `Node` interface that objects can implement, and a field config for a `node` root field. If the type_resolver is omitted, object resolution on the interface will be handled with the `isTypeOf` method on object types, as with any GraphQL interface without a provided `resolveType` method.
3.925619
1.697994
2.311916
def node_definitions(id_fetcher, type_resolver=None, id_resolver=None): """ Given a function to map from an ID to an underlying object, and a function to map from an underlying object to the concrete GraphQLObjectType it corresponds to, constructs a `Node` interface that objects can implement, and a field config for a `node` root field. If the type_resolver is omitted, object resolution on the interface will be handled with the `isTypeOf` method on object types, as with any GraphQL interface without a provided `resolveType` method. """ ''' Given a function to map from an ID to an underlying object, and a function to map from an underlying object to the concrete GraphQLObjectType it corresponds to, constructs a `Node` interface that objects can implement, and a field config for a `node` root field. If the type_resolver is omitted, object resolution on the interface will be handled with the `isTypeOf` method on object types, as with any GraphQL interface without a provided `resolveType` method. ''' node_interface = GraphQLInterfaceType( 'Node', description='An object with an ID', fields=lambda: OrderedDict(( ('id', GraphQLField( GraphQLNonNull(GraphQLID), description='The id of the object.', resolver=id_resolver, )), )), resolve_type=type_resolver ) node_field = GraphQLField( node_interface, description='Fetches an object given its ID', args=OrderedDict(( ('id', GraphQLArgument( GraphQLNonNull(GraphQLID), description='The ID of an object' )), )), resolver=lambda obj, args, *_: id_fetcher(args.get('id'), *_) ) return node_interface, node_field
0.723065
0.739281
''' Given an optional cursor and a default offset, returns the offset to use; if the cursor contains a valid offset, that will be used, otherwise it will be the default. ''' if not is_str(cursor): return default_offset offset = cursor_to_offset(cursor) try: return int(offset) except: return default_offset
def get_offset_with_default(cursor=None, default_offset=0)
Given an optional cursor and a default offset, returns the offset to use; if the cursor contains a valid offset, that will be used, otherwise it will be the default.
3.98127
2.254083
1.766248
def get_offset_with_default(cursor=None, default_offset=0): """ Given an optional cursor and a default offset, returns the offset to use; if the cursor contains a valid offset, that will be used, otherwise it will be the default. """ ''' Given an optional cursor and a default offset, returns the offset to use; if the cursor contains a valid offset, that will be used, otherwise it will be the default. ''' if not is_str(cursor): return default_offset offset = cursor_to_offset(cursor) try: return int(offset) except: return default_offset
0.613179
0.515132
# Get a list of node ids from the edge data nodes = set(e['source'] for e in edges) | set(e['target'] for e in edges) # Convert to a data-storing object and initialize some values d = 3 if is_3d else 2 nodes = {n: {'velocity': [0.0] * d, 'force': [0.0] * d} for n in nodes} # Repeat n times (is there a more Pythonic way to do this?) for _ in repeat(None, iterations): # Add in Coulomb-esque node-node repulsive forces for node1, node2 in combinations(nodes.values(), 2): _coulomb(node1, node2, force_strength, max_distance) # And Hooke-esque edge spring forces for edge in edges: _hooke(nodes[edge['source']], nodes[edge['target']], force_strength * edge.get('size', 1), max_distance) # Move by resultant force for node in nodes.values(): # Constrain the force to the bounds specified by input parameter force = [_constrain(dampening * f, -max_velocity, max_velocity) for f in node['force']] # Update velocities and reset force node['velocity'] = [v + dv for v, dv in zip(node['velocity'], force)] node['force'] = [0] * d # Clean and return for node in nodes.values(): del node['force'] node['location'] = node['velocity'] del node['velocity'] # Even if it's 2D, let's specify three dimensions if not is_3d: node['location'] += [0.0] return nodes
def run(edges, iterations=1000, force_strength=5.0, dampening=0.01, max_velocity=2.0, max_distance=50, is_3d=True)
Runs a force-directed-layout algorithm on the input graph. iterations - Number of FDL iterations to run in coordinate generation force_strength - Strength of Coulomb and Hooke forces (edit this to scale the distance between nodes) dampening - Multiplier to reduce force applied to nodes max_velocity - Maximum distance a node can move in one step max_distance - The maximum distance considered for interactions
3.911408
3.815891
1.025032
def run(edges, iterations=1000, force_strength=5.0, dampening=0.01, max_velocity=2.0, max_distance=50, is_3d=True): """ Runs a force-directed-layout algorithm on the input graph. iterations - Number of FDL iterations to run in coordinate generation force_strength - Strength of Coulomb and Hooke forces (edit this to scale the distance between nodes) dampening - Multiplier to reduce force applied to nodes max_velocity - Maximum distance a node can move in one step max_distance - The maximum distance considered for interactions """ # Get a list of node ids from the edge data nodes = set(e['source'] for e in edges) | set(e['target'] for e in edges) # Convert to a data-storing object and initialize some values d = 3 if is_3d else 2 nodes = {n: {'velocity': [0.0] * d, 'force': [0.0] * d} for n in nodes} # Repeat n times (is there a more Pythonic way to do this?) for _ in repeat(None, iterations): # Add in Coulomb-esque node-node repulsive forces for node1, node2 in combinations(nodes.values(), 2): _coulomb(node1, node2, force_strength, max_distance) # And Hooke-esque edge spring forces for edge in edges: _hooke(nodes[edge['source']], nodes[edge['target']], force_strength * edge.get('size', 1), max_distance) # Move by resultant force for node in nodes.values(): # Constrain the force to the bounds specified by input parameter force = [_constrain(dampening * f, -max_velocity, max_velocity) for f in node['force']] # Update velocities and reset force node['velocity'] = [v + dv for v, dv in zip(node['velocity'], force)] node['force'] = [0] * d # Clean and return for node in nodes.values(): del node['force'] node['location'] = node['velocity'] del node['velocity'] # Even if it's 2D, let's specify three dimensions if not is_3d: node['location'] += [0.0] return nodes
0.620219
0.634932
logger.debug("starting") assert pipeline assert steps_group logger.debug(f"retrieving {steps_group} steps from pipeline") if steps_group in pipeline: steps = pipeline[steps_group] if steps is None: logger.warn( f"{steps_group}: sequence has no elements. So it won't do " "anything.") logger.debug("done") return None steps_count = len(steps) logger.debug(f"{steps_count} steps found under {steps_group} in " "pipeline definition.") logger.debug("done") return steps else: logger.debug( f"pipeline doesn't have a {steps_group} collection. Add a " f"{steps_group}: sequence to the yaml if you want {steps_group} " "actually to do something.") logger.debug("done") return None
def get_pipeline_steps(pipeline, steps_group)
Get the steps attribute of module pipeline. If there is no steps sequence on the pipeline, return None. Guess you could theoretically want to run a pipeline with nothing in it.
4.105674
3.856518
1.064607
def get_pipeline_steps(pipeline, steps_group): """ Get the steps attribute of module pipeline. If there is no steps sequence on the pipeline, return None. Guess you could theoretically want to run a pipeline with nothing in it. """ logger.debug("starting") assert pipeline assert steps_group logger.debug(f"retrieving {steps_group} steps from pipeline") if steps_group in pipeline: steps = pipeline[steps_group] if steps is None: logger.warn( f"{steps_group}: sequence has no elements. So it won't do " "anything.") logger.debug("done") return None steps_count = len(steps) logger.debug(f"{steps_count} steps found under {steps_group} in " "pipeline definition.") logger.debug("done") return steps else: logger.debug( f"pipeline doesn't have a {steps_group} collection. Add a " f"{steps_group}: sequence to the yaml if you want {steps_group} " "actually to do something.") logger.debug("done") return None
0.68988
0.5984
tag_representers = [PyString, SicString] yaml_loader = get_yaml_parser_safe() for representer in tag_representers: yaml_loader.register_class(representer) pipeline_definition = yaml_loader.load(file) return pipeline_definition
def get_pipeline_yaml(file)
Return pipeline yaml from open file object. Use specific custom representers to model the custom pypyr pipeline yaml format, to load in special literal types like py and sic strings. If looking to extend the pypyr pipeline syntax with special types, add these to the tag_representers list. Args: file: open file-like object. Returns: dict-like representation of loaded yaml.
7.524
5.018706
1.499191
def get_pipeline_yaml(file): """ Return pipeline yaml from open file object. Use specific custom representers to model the custom pypyr pipeline yaml format, to load in special literal types like py and sic strings. If looking to extend the pypyr pipeline syntax with special types, add these to the tag_representers list. Args: file: open file-like object. Returns: dict-like representation of loaded yaml. """ tag_representers = [PyString, SicString] yaml_loader = get_yaml_parser_safe() for representer in tag_representers: yaml_loader.register_class(representer) pipeline_definition = yaml_loader.load(file) return pipeline_definition
0.718829
0.606761
def partial(func, col, *args, **kwargs): def new_func(gdf): return func(gdf[col], *args, **kwargs) return new_func def make_statement(func, col): if isinstance(func, str): expr = '{}({})'.format(func, col) elif callable(func): expr = partial(func, col, *verb.args, **verb.kwargs) else: raise TypeError("{} is not a function".format(func)) return expr def func_name(func): if isinstance(func, str): return func try: return func.__name__ except AttributeError: return '' # Generate function names. They act as identifiers (postfixed # to the original columns) in the new_column names. if isinstance(verb.functions, (tuple, list)): names = (func_name(func) for func in verb.functions) names_and_functions = zip(names, verb.functions) else: names_and_functions = verb.functions.items() # Create statements for the expressions # and postfix identifiers columns = Selector.get(verb) # columns to act on postfixes = [] stmts = [] for name, func in names_and_functions: postfixes.append(name) for col in columns: stmts.append(make_statement(func, col)) if not stmts: stmts = columns # Names of the new columns # e.g col1_mean, col2_mean, col1_std, col2_std add_postfix = (isinstance(verb.functions, dict) or len(verb.functions) > 1) if add_postfix: fmt = '{}_{}'.format new_columns = [fmt(c, p) for p in postfixes for c in columns] else: new_columns = columns expressions = [Expression(stmt, col) for stmt, col in zip(stmts, new_columns)] return expressions, new_columns
def build_expressions(verb)
Build expressions for helper verbs Parameters ---------- verb : verb A verb with a *functions* attribute. Returns ------- out : tuple (List of Expressions, New columns). The expressions and the new columns in which the results of those expressions will be stored. Even when a result will stored in a column with an existing label, that column is still considered new, i.e An expression ``x='x+1'``, will create a new_column `x` to replace an old column `x`.
3.490683
3.391462
1.029256
def build_expressions(verb): """ Build expressions for helper verbs Parameters ---------- verb : verb A verb with a *functions* attribute. Returns ------- out : tuple (List of Expressions, New columns). The expressions and the new columns in which the results of those expressions will be stored. Even when a result will stored in a column with an existing label, that column is still considered new, i.e An expression ``x='x+1'``, will create a new_column `x` to replace an old column `x`. """ def partial(func, col, *args, **kwargs): def new_func(gdf): return func(gdf[col], *args, **kwargs) return new_func def make_statement(func, col): if isinstance(func, str): expr = '{}({})'.format(func, col) elif callable(func): expr = partial(func, col, *verb.args, **verb.kwargs) else: raise TypeError("{} is not a function".format(func)) return expr def func_name(func): if isinstance(func, str): return func try: return func.__name__ except AttributeError: return '' # Generate function names. They act as identifiers (postfixed # to the original columns) in the new_column names. if isinstance(verb.functions, (tuple, list)): names = (func_name(func) for func in verb.functions) names_and_functions = zip(names, verb.functions) else: names_and_functions = verb.functions.items() # Create statements for the expressions # and postfix identifiers columns = Selector.get(verb) # columns to act on postfixes = [] stmts = [] for name, func in names_and_functions: postfixes.append(name) for col in columns: stmts.append(make_statement(func, col)) if not stmts: stmts = columns # Names of the new columns # e.g col1_mean, col2_mean, col1_std, col2_std add_postfix = (isinstance(verb.functions, dict) or len(verb.functions) > 1) if add_postfix: fmt = '{}_{}'.format new_columns = [fmt(c, p) for p in postfixes for c in columns] else: new_columns = columns expressions = [Expression(stmt, col) for stmt, col in zip(stmts, new_columns)] return expressions, new_columns
0.788359
0.708515
# Note: There's an experimental JSON encoder floating around in # pandas land that hasn't made it into the main branch. This # function should be revisited if it ever does. if not pd: raise LoadError('pandas could not be imported') if not hasattr(data, 'index'): raise ValueError('Please load a Pandas object.') if name: vega_data = cls(name=name, **kwargs) else: vega_data = cls(name='table', **kwargs) pd_obj = data.copy() if columns: pd_obj = data[columns] if key_on != 'idx': pd_obj.index = data[key_on] if records: # The worst vega_data.values = json.loads(pd_obj.to_json(orient='records')) return vega_data vega_data.values = [] if isinstance(pd_obj, pd.Series): data_key = data.name or series_key for i, v in pd_obj.iteritems(): value = {} value['idx'] = cls.serialize(i) value['col'] = data_key value['val'] = cls.serialize(v) vega_data.values.append(value) elif isinstance(pd_obj, pd.DataFrame): # We have to explicitly convert the column names to strings # because the json serializer doesn't allow for integer keys. for i, row in pd_obj.iterrows(): for num, (k, v) in enumerate(row.iteritems()): value = {} value['idx'] = cls.serialize(i) value['col'] = cls.serialize(k) value['val'] = cls.serialize(v) if grouped: value['group'] = num vega_data.values.append(value) else: raise ValueError('cannot load from data type ' + type(pd_obj).__name__) return vega_data
def from_pandas(cls, data, columns=None, key_on='idx', name=None, series_key='data', grouped=False, records=False, **kwargs)
Load values from a pandas ``Series`` or ``DataFrame`` object Parameters ---------- data : pandas ``Series`` or ``DataFrame`` Pandas object to import data from. columns: list, default None DataFrame columns to convert to Data. Keys default to col names. If columns are given and on_index is False, x-axis data will default to the first column. key_on: string, default 'index' Value to key on for x-axis data. Defaults to index. name : string, default None Applies to the ``name`` attribute of the generated class. If ``None`` (default), then the ``name`` attribute of ``pd_obj`` is used if it exists, or ``'table'`` if it doesn't. series_key : string, default 'data' Applies only to ``Series``. If ``None`` (default), then defaults to data.name. For example, if ``series_key`` is ``'x'``, then the entries of the ``values`` list will be ``{'idx': ..., 'col': 'x', 'val': ...}``. grouped: boolean, default False Pass true for an extra grouping parameter records: boolean, defaule False Requires Pandas 0.12 or greater. Writes the Pandas DataFrame using the df.to_json(orient='records') formatting. **kwargs : dict Additional arguments passed to the :class:`Data` constructor.
3.233727
3.127881
1.03384
def from_pandas(cls, data, columns=None, key_on='idx', name=None, series_key='data', grouped=False, records=False, **kwargs): """ Load values from a pandas ``Series`` or ``DataFrame`` object Parameters ---------- data : pandas ``Series`` or ``DataFrame`` Pandas object to import data from. columns: list, default None DataFrame columns to convert to Data. Keys default to col names. If columns are given and on_index is False, x-axis data will default to the first column. key_on: string, default 'index' Value to key on for x-axis data. Defaults to index. name : string, default None Applies to the ``name`` attribute of the generated class. If ``None`` (default), then the ``name`` attribute of ``pd_obj`` is used if it exists, or ``'table'`` if it doesn't. series_key : string, default 'data' Applies only to ``Series``. If ``None`` (default), then defaults to data.name. For example, if ``series_key`` is ``'x'``, then the entries of the ``values`` list will be ``{'idx': ..., 'col': 'x', 'val': ...}``. grouped: boolean, default False Pass true for an extra grouping parameter records: boolean, defaule False Requires Pandas 0.12 or greater. Writes the Pandas DataFrame using the df.to_json(orient='records') formatting. **kwargs : dict Additional arguments passed to the :class:`Data` constructor. """ # Note: There's an experimental JSON encoder floating around in # pandas land that hasn't made it into the main branch. This # function should be revisited if it ever does. if not pd: raise LoadError('pandas could not be imported') if not hasattr(data, 'index'): raise ValueError('Please load a Pandas object.') if name: vega_data = cls(name=name, **kwargs) else: vega_data = cls(name='table', **kwargs) pd_obj = data.copy() if columns: pd_obj = data[columns] if key_on != 'idx': pd_obj.index = data[key_on] if records: # The worst vega_data.values = json.loads(pd_obj.to_json(orient='records')) return vega_data vega_data.values = [] if isinstance(pd_obj, pd.Series): data_key = data.name or series_key for i, v in pd_obj.iteritems(): value = {} value['idx'] = cls.serialize(i) value['col'] = data_key value['val'] = cls.serialize(v) vega_data.values.append(value) elif isinstance(pd_obj, pd.DataFrame): # We have to explicitly convert the column names to strings # because the json serializer doesn't allow for integer keys. for i, row in pd_obj.iterrows(): for num, (k, v) in enumerate(row.iteritems()): value = {} value['idx'] = cls.serialize(i) value['col'] = cls.serialize(k) value['val'] = cls.serialize(v) if grouped: value['group'] = num vega_data.values.append(value) else: raise ValueError('cannot load from data type ' + type(pd_obj).__name__) return vega_data
0.655253
0.510496
if not np: raise LoadError('numpy could not be imported') _assert_is_type('numpy object', np_obj, np.ndarray) # Integer index if none is provided index = index or range(np_obj.shape[0]) # Explicitly map dict-keys to strings for JSON serializer. columns = list(map(str, columns)) index_key = index_key or cls._default_index_key if len(index) != np_obj.shape[0]: raise LoadError( 'length of index must be equal to number of rows of array') elif len(columns) != np_obj.shape[1]: raise LoadError( 'length of columns must be equal to number of columns of ' 'array') data = cls(name=name, **kwargs) data.values = [ dict([(index_key, cls.serialize(idx))] + [(col, x) for col, x in zip(columns, row)]) for idx, row in zip(index, np_obj.tolist())] return data
def from_numpy(cls, np_obj, name, columns, index=None, index_key=None, **kwargs)
Load values from a numpy array Parameters ---------- np_obj : numpy.ndarray numpy array to load data from name : string ``name`` field for the data columns : iterable Sequence of column names, from left to right. Must have same length as the number of columns of ``np_obj``. index : iterable, default None Sequence of indices from top to bottom. If ``None`` (default), then the indices are integers starting at 0. Must have same length as the number of rows of ``np_obj``. index_key : string, default None Key to use for the index. If ``None`` (default), ``idx`` is used. **kwargs : dict Additional arguments passed to the :class:`Data` constructor Notes ----- The individual elements of ``np_obj``, ``columns``, and ``index`` must return valid values from :func:`Data.serialize`.
3.328766
3.271502
1.017504
def from_numpy(cls, np_obj, name, columns, index=None, index_key=None, **kwargs): """ Load values from a numpy array Parameters ---------- np_obj : numpy.ndarray numpy array to load data from name : string ``name`` field for the data columns : iterable Sequence of column names, from left to right. Must have same length as the number of columns of ``np_obj``. index : iterable, default None Sequence of indices from top to bottom. If ``None`` (default), then the indices are integers starting at 0. Must have same length as the number of rows of ``np_obj``. index_key : string, default None Key to use for the index. If ``None`` (default), ``idx`` is used. **kwargs : dict Additional arguments passed to the :class:`Data` constructor Notes ----- The individual elements of ``np_obj``, ``columns``, and ``index`` must return valid values from :func:`Data.serialize`. """ if not np: raise LoadError('numpy could not be imported') _assert_is_type('numpy object', np_obj, np.ndarray) # Integer index if none is provided index = index or range(np_obj.shape[0]) # Explicitly map dict-keys to strings for JSON serializer. columns = list(map(str, columns)) index_key = index_key or cls._default_index_key if len(index) != np_obj.shape[0]: raise LoadError( 'length of index must be equal to number of rows of array') elif len(columns) != np_obj.shape[1]: raise LoadError( 'length of columns must be equal to number of columns of ' 'array') data = cls(name=name, **kwargs) data.values = [ dict([(index_key, cls.serialize(idx))] + [(col, x) for col, x in zip(columns, row)]) for idx, row in zip(index, np_obj.tolist())] return data
0.837188
0.722845
if not name: name = 'table' cls.raw_data = data # Tuples if isinstance(data, tuple): values = [{"x": x[0], "y": x[1]} for x in data] # Lists elif isinstance(data, list): values = [{"x": x, "y": y} for x, y in zip(range(len(data) + 1), data)] # Dicts elif isinstance(data, dict) or isinstance(data, pd.Series): values = [{"x": x, "y": y} for x, y in sorted(data.items())] # Dataframes elif isinstance(data, pd.DataFrame): if len(columns) > 1 and use_index: raise ValueError('If using index as x-axis, len(columns)' 'cannot be > 1') if use_index or len(columns) == 1: values = [{"x": cls.serialize(x[0]), "y": cls.serialize(x[1][columns[0]])} for x in data.iterrows()] else: values = [{"x": cls.serialize(x[1][columns[0]]), "y": cls.serialize(x[1][columns[1]])} for x in data.iterrows()] # NumPy arrays elif isinstance(data, np.ndarray): values = cls._numpy_to_values(data) else: raise TypeError('unknown data type %s' % type(data)) return cls(name, values=values)
def keypairs(cls, data, columns=None, use_index=False, name=None)
This will format the data as Key: Value pairs, rather than the idx/col/val style. This is useful for some transforms, and to key choropleth map data Standard Data Types: List: [0, 10, 20, 30, 40] Paired Tuples: ((0, 1), (0, 2), (0, 3)) Dict: {'A': 10, 'B': 20, 'C': 30, 'D': 40, 'E': 50} Plus Pandas DataFrame and Series, and Numpy ndarray Parameters ---------- data: List, Tuple, Dict, Pandas Series/DataFrame, Numpy ndarray columns: list, default None If passing Pandas DataFrame, you must pass at least one column name.If one column is passed, x-values will default to the index values.If two column names are passed, x-values are columns[0], y-values columns[1]. use_index: boolean, default False Use the DataFrame index for your x-values
2.374697
2.351368
1.009921
def keypairs(cls, data, columns=None, use_index=False, name=None): """ This will format the data as Key: Value pairs, rather than the idx/col/val style. This is useful for some transforms, and to key choropleth map data Standard Data Types: List: [0, 10, 20, 30, 40] Paired Tuples: ((0, 1), (0, 2), (0, 3)) Dict: {'A': 10, 'B': 20, 'C': 30, 'D': 40, 'E': 50} Plus Pandas DataFrame and Series, and Numpy ndarray Parameters ---------- data: List, Tuple, Dict, Pandas Series/DataFrame, Numpy ndarray columns: list, default None If passing Pandas DataFrame, you must pass at least one column name.If one column is passed, x-values will default to the index values.If two column names are passed, x-values are columns[0], y-values columns[1]. use_index: boolean, default False Use the DataFrame index for your x-values """ if not name: name = 'table' cls.raw_data = data # Tuples if isinstance(data, tuple): values = [{"x": x[0], "y": x[1]} for x in data] # Lists elif isinstance(data, list): values = [{"x": x, "y": y} for x, y in zip(range(len(data) + 1), data)] # Dicts elif isinstance(data, dict) or isinstance(data, pd.Series): values = [{"x": x, "y": y} for x, y in sorted(data.items())] # Dataframes elif isinstance(data, pd.DataFrame): if len(columns) > 1 and use_index: raise ValueError('If using index as x-axis, len(columns)' 'cannot be > 1') if use_index or len(columns) == 1: values = [{"x": cls.serialize(x[0]), "y": cls.serialize(x[1][columns[0]])} for x in data.iterrows()] else: values = [{"x": cls.serialize(x[1][columns[0]]), "y": cls.serialize(x[1][columns[1]])} for x in data.iterrows()] # NumPy arrays elif isinstance(data, np.ndarray): values = cls._numpy_to_values(data) else: raise TypeError('unknown data type %s' % type(data)) return cls(name, values=values)
0.786889
0.643427
'''Convert a NumPy array to values attribute''' def to_list_no_index(xvals, yvals): return [{"x": x, "y": np.asscalar(y)} for x, y in zip(xvals, yvals)] if len(data.shape) == 1 or data.shape[1] == 1: xvals = range(data.shape[0] + 1) values = to_list_no_index(xvals, data) elif len(data.shape) == 2: if data.shape[1] == 2: # NumPy arrays and matrices have different iteration rules. if isinstance(data, np.matrix): xidx = (0, 0) yidx = (0, 1) else: xidx = 0 yidx = 1 xvals = [np.asscalar(row[xidx]) for row in data] yvals = [np.asscalar(row[yidx]) for row in data] values = [{"x": x, "y": y} for x, y in zip(xvals, yvals)] else: raise ValueError('arrays with > 2 columns not supported') else: raise ValueError('invalid dimensions for ndarray') return values
def _numpy_to_values(data)
Convert a NumPy array to values attribute
2.689877
2.631855
1.022046
def _numpy_to_values(data): """ Convert a NumPy array to values attribute """ '''Convert a NumPy array to values attribute''' def to_list_no_index(xvals, yvals): return [{"x": x, "y": np.asscalar(y)} for x, y in zip(xvals, yvals)] if len(data.shape) == 1 or data.shape[1] == 1: xvals = range(data.shape[0] + 1) values = to_list_no_index(xvals, data) elif len(data.shape) == 2: if data.shape[1] == 2: # NumPy arrays and matrices have different iteration rules. if isinstance(data, np.matrix): xidx = (0, 0) yidx = (0, 1) else: xidx = 0 yidx = 1 xvals = [np.asscalar(row[xidx]) for row in data] yvals = [np.asscalar(row[yidx]) for row in data] values = [{"x": x, "y": y} for x, y in zip(xvals, yvals)] else: raise ValueError('arrays with > 2 columns not supported') else: raise ValueError('invalid dimensions for ndarray') return values
0.601008
0.73848
retval = tuple() for val in self.VALUES: retval += (getattr(self, val),) return retval
def get_value_tuple(self)
Returns a tuple of the color's values (in order). For example, an LabColor object will return (lab_l, lab_a, lab_b), where each member of the tuple is the float value for said variable.
6.593547
5.879219
1.1215
def get_value_tuple(self): """ Returns a tuple of the color's values (in order). For example, an LabColor object will return (lab_l, lab_a, lab_b), where each member of the tuple is the float value for said variable. """ retval = tuple() for val in self.VALUES: retval += (getattr(self, val),) return retval
0.664568
0.57824
# This holds the obect's spectral data, and will be passed to # numpy.array() to create a numpy array (matrix) for the matrix math # that will be done during the conversion to XYZ. values = [] # Use the required value list to build this dynamically. Default to # 0.0, since that ultimately won't affect the outcome due to the math # involved. for val in self.VALUES: values.append(getattr(self, val, 0.0)) # Create and the actual numpy array/matrix from the spectral list. color_array = numpy.array([values]) return color_array
def get_numpy_array(self)
Dump this color into NumPy array.
11.971473
11.074844
1.080961
def get_numpy_array(self): """ Dump this color into NumPy array. """ # This holds the obect's spectral data, and will be passed to # numpy.array() to create a numpy array (matrix) for the matrix math # that will be done during the conversion to XYZ. values = [] # Use the required value list to build this dynamically. Default to # 0.0, since that ultimately won't affect the outcome due to the math # involved. for val in self.VALUES: values.append(getattr(self, val, 0.0)) # Create and the actual numpy array/matrix from the spectral list. color_array = numpy.array([values]) return color_array
0.562417
0.6705
blue_density = ansi_density(color, ANSI_STATUS_T_BLUE) green_density = ansi_density(color, ANSI_STATUS_T_GREEN) red_density = ansi_density(color, ANSI_STATUS_T_RED) densities = [blue_density, green_density, red_density] min_density = min(densities) max_density = max(densities) density_range = max_density - min_density # See comments in density_standards.py for VISUAL_DENSITY_THRESH to # understand what this is doing. if density_range <= VISUAL_DENSITY_THRESH: return ansi_density(color, ISO_VISUAL) elif blue_density > green_density and blue_density > red_density: return blue_density elif green_density > blue_density and green_density > red_density: return green_density else: return red_density
def auto_density(color)
Given a SpectralColor, automatically choose the correct ANSI T filter. Returns a tuple with a string representation of the filter the calculated density. :param SpectralColor color: The SpectralColor object to calculate density for. :rtype: float :returns: The density value, with the filter selected automatically.
2.772206
2.771969
1.000086
def auto_density(color): """ Given a SpectralColor, automatically choose the correct ANSI T filter. Returns a tuple with a string representation of the filter the calculated density. :param SpectralColor color: The SpectralColor object to calculate density for. :rtype: float :returns: The density value, with the filter selected automatically. """ blue_density = ansi_density(color, ANSI_STATUS_T_BLUE) green_density = ansi_density(color, ANSI_STATUS_T_GREEN) red_density = ansi_density(color, ANSI_STATUS_T_RED) densities = [blue_density, green_density, red_density] min_density = min(densities) max_density = max(densities) density_range = max_density - min_density # See comments in density_standards.py for VISUAL_DENSITY_THRESH to # understand what this is doing. if density_range <= VISUAL_DENSITY_THRESH: return ansi_density(color, ISO_VISUAL) elif blue_density > green_density and blue_density > red_density: return blue_density elif green_density > blue_density and green_density > red_density: return green_density else: return red_density
0.848219
0.810291
color1_vector = _get_lab_color1_vector(color1) color2_matrix = _get_lab_color2_matrix(color2) delta_e = color_diff_matrix.delta_e_cie1976(color1_vector, color2_matrix)[0] return numpy.asscalar(delta_e)
def delta_e_cie1976(color1, color2)
Calculates the Delta E (CIE1976) of two colors.
3.257775
3.218294
1.012268
def delta_e_cie1976(color1, color2): """ Calculates the Delta E (CIE1976) of two colors. """ color1_vector = _get_lab_color1_vector(color1) color2_matrix = _get_lab_color2_matrix(color2) delta_e = color_diff_matrix.delta_e_cie1976(color1_vector, color2_matrix)[0] return numpy.asscalar(delta_e)
0.693668
0.655694
def decorator(f): f.start_type = start_type f.target_type = target_type _conversion_manager.add_type_conversion(start_type, target_type, f) return f return decorator
def color_conversion_function(start_type, target_type)
Decorator to indicate a function that performs a conversion from one color space to another. This decorator will return the original function unmodified, however it will be registered in the _conversion_manager so it can be used to perform color space transformations between color spaces that do not have direct conversion functions (e.g., Luv to CMYK). Note: For a conversion to/from RGB supply the BaseRGBColor class. :param start_type: Starting color space type :param target_type: Target color space type
2.876948
2.635455
1.091632
def color_conversion_function(start_type, target_type): """ Decorator to indicate a function that performs a conversion from one color space to another. This decorator will return the original function unmodified, however it will be registered in the _conversion_manager so it can be used to perform color space transformations between color spaces that do not have direct conversion functions (e.g., Luv to CMYK). Note: For a conversion to/from RGB supply the BaseRGBColor class. :param start_type: Starting color space type :param target_type: Target color space type """ def decorator(f): f.start_type = start_type f.target_type = target_type _conversion_manager.add_type_conversion(start_type, target_type, f) return f return decorator
0.788268
0.714298
rgb = self.xyz_to_rgb(xyz) logger.debug('RGB: {}'.format(rgb)) rgb_w = self.xyz_to_rgb(xyz_w) logger.debug('RGB_W: {}'.format(rgb_w)) y_w = xyz_w[1] y_b = xyz_b[1] h_rgb = 3 * rgb_w / (rgb_w.sum()) logger.debug('H_RGB: {}'.format(h_rgb)) # Chromatic adaptation factors if not discount_illuminant: f_rgb = (1 + (l_a ** (1 / 3)) + h_rgb) / (1 + (l_a ** (1 / 3)) + (1 / h_rgb)) else: f_rgb = numpy.ones(numpy.shape(h_rgb)) logger.debug('F_RGB: {}'.format(f_rgb)) # Adaptation factor if helson_judd: d_rgb = self._f_n((y_b / y_w) * f_l * f_rgb[1]) - self._f_n((y_b / y_w) * f_l * f_rgb) assert d_rgb[1] == 0 else: d_rgb = numpy.zeros(numpy.shape(f_rgb)) logger.debug('D_RGB: {}'.format(d_rgb)) # Cone bleaching factors rgb_b = (10 ** 7) / ((10 ** 7) + 5 * l_a * (rgb_w / 100)) logger.debug('B_RGB: {}'.format(rgb_b)) if xyz_p is not None and p is not None: logger.debug('Account for simultaneous chromatic contrast') rgb_p = self.xyz_to_rgb(xyz_p) rgb_w = self.adjust_white_for_scc(rgb_p, rgb_b, rgb_w, p) # Adapt rgb using modified rgb_a = 1 + rgb_b * (self._f_n(f_l * f_rgb * rgb / rgb_w) + d_rgb) logger.debug('RGB_A: {}'.format(rgb_a)) return rgb_a
def _adaptation(self, f_l, l_a, xyz, xyz_w, xyz_b, xyz_p=None, p=None, helson_judd=False, discount_illuminant=True)
:param f_l: Luminance adaptation factor :param l_a: Adapting luminance :param xyz: Stimulus color in XYZ :param xyz_w: Reference white color in XYZ :param xyz_b: Background color in XYZ :param xyz_p: Proxima field color in XYZ :param p: Simultaneous contrast/assimilation parameter.
2.953449
2.886516
1.023188
def _adaptation(self, f_l, l_a, xyz, xyz_w, xyz_b, xyz_p=None, p=None, helson_judd=False, discount_illuminant=True): """ :param f_l: Luminance adaptation factor :param l_a: Adapting luminance :param xyz: Stimulus color in XYZ :param xyz_w: Reference white color in XYZ :param xyz_b: Background color in XYZ :param xyz_p: Proxima field color in XYZ :param p: Simultaneous contrast/assimilation parameter. """ rgb = self.xyz_to_rgb(xyz) logger.debug('RGB: {}'.format(rgb)) rgb_w = self.xyz_to_rgb(xyz_w) logger.debug('RGB_W: {}'.format(rgb_w)) y_w = xyz_w[1] y_b = xyz_b[1] h_rgb = 3 * rgb_w / (rgb_w.sum()) logger.debug('H_RGB: {}'.format(h_rgb)) # Chromatic adaptation factors if not discount_illuminant: f_rgb = (1 + (l_a ** (1 / 3)) + h_rgb) / (1 + (l_a ** (1 / 3)) + (1 / h_rgb)) else: f_rgb = numpy.ones(numpy.shape(h_rgb)) logger.debug('F_RGB: {}'.format(f_rgb)) # Adaptation factor if helson_judd: d_rgb = self._f_n((y_b / y_w) * f_l * f_rgb[1]) - self._f_n((y_b / y_w) * f_l * f_rgb) assert d_rgb[1] == 0 else: d_rgb = numpy.zeros(numpy.shape(f_rgb)) logger.debug('D_RGB: {}'.format(d_rgb)) # Cone bleaching factors rgb_b = (10 ** 7) / ((10 ** 7) + 5 * l_a * (rgb_w / 100)) logger.debug('B_RGB: {}'.format(rgb_b)) if xyz_p is not None and p is not None: logger.debug('Account for simultaneous chromatic contrast') rgb_p = self.xyz_to_rgb(xyz_p) rgb_w = self.adjust_white_for_scc(rgb_p, rgb_b, rgb_w, p) # Adapt rgb using modified rgb_a = 1 + rgb_b * (self._f_n(f_l * f_rgb * rgb / rgb_w) + d_rgb) logger.debug('RGB_A: {}'.format(rgb_a)) return rgb_a
0.701496
0.511412
x_e = 0.3320 y_e = 0.1858 n = ((x / (x + z + z)) - x_e) / ((y / (x + z + z)) - y_e) a_0 = -949.86315 a_1 = 6253.80338 a_2 = 28.70599 a_3 = 0.00004 t_1 = 0.92159 t_2 = 0.20039 t_3 = 0.07125 cct = a_0 + a_1 * numpy.exp(-n / t_1) + a_2 * numpy.exp(-n / t_2) + a_3 * numpy.exp(-n / t_3) return cct
def _get_cct(x, y, z)
Reference Hernandez-Andres, J., Lee, R. L., & Romero, J. (1999). Calculating correlated color temperatures across the entire gamut of daylight and skylight chromaticities. Applied Optics, 38(27), 5703-5709.
3.796291
3.73003
1.017764
def _get_cct(x, y, z): """ Reference Hernandez-Andres, J., Lee, R. L., & Romero, J. (1999). Calculating correlated color temperatures across the entire gamut of daylight and skylight chromaticities. Applied Optics, 38(27), 5703-5709. """ x_e = 0.3320 y_e = 0.1858 n = ((x / (x + z + z)) - x_e) / ((y / (x + z + z)) - y_e) a_0 = -949.86315 a_1 = 6253.80338 a_2 = 28.70599 a_3 = 0.00004 t_1 = 0.92159 t_2 = 0.20039 t_3 = 0.07125 cct = a_0 + a_1 * numpy.exp(-n / t_1) + a_2 * numpy.exp(-n / t_2) + a_3 * numpy.exp(-n / t_3) return cct
0.588653
0.530419
# Transform input colors to cone responses rgb = self._xyz_to_rgb(xyz) logger.debug("RGB: {}".format(rgb)) rgb_b = self._xyz_to_rgb(self._xyz_b) rgb_w = self._xyz_to_rgb(xyz_w) rgb_w = Hunt.adjust_white_for_scc(rgb, rgb_b, rgb_w, self._p) logger.debug("RGB_W: {}".format(rgb_w)) # Compute adapted tristimulus-responses rgb_c = self._white_adaption(rgb, rgb_w, d) logger.debug("RGB_C: {}".format(rgb_c)) rgb_cw = self._white_adaption(rgb_w, rgb_w, d) logger.debug("RGB_CW: {}".format(rgb_cw)) # Convert adapted tristimulus-responses to Hunt-Pointer-Estevez fundamentals rgb_p = self._compute_hunt_pointer_estevez_fundamentals(rgb_c) logger.debug("RGB': {}".format(rgb_p)) rgb_wp = self._compute_hunt_pointer_estevez_fundamentals(rgb_cw) logger.debug("RGB'_W: {}".format(rgb_wp)) # Compute post-adaptation non-linearities rgb_ap = self._compute_nonlinearities(f_l, rgb_p) rgb_awp = self._compute_nonlinearities(f_l, rgb_wp) return rgb_ap, rgb_awp
def _compute_adaptation(self, xyz, xyz_w, f_l, d)
Modified adaptation procedure incorporating simultaneous chromatic contrast from Hunt model. :param xyz: Stimulus XYZ. :param xyz_w: Reference white XYZ. :param f_l: Luminance adaptation factor :param d: Degree of adaptation. :return: Tuple of adapted rgb and rgb_w arrays.
3.020088
2.857865
1.056764
def _compute_adaptation(self, xyz, xyz_w, f_l, d): """ Modified adaptation procedure incorporating simultaneous chromatic contrast from Hunt model. :param xyz: Stimulus XYZ. :param xyz_w: Reference white XYZ. :param f_l: Luminance adaptation factor :param d: Degree of adaptation. :return: Tuple of adapted rgb and rgb_w arrays. """ # Transform input colors to cone responses rgb = self._xyz_to_rgb(xyz) logger.debug("RGB: {}".format(rgb)) rgb_b = self._xyz_to_rgb(self._xyz_b) rgb_w = self._xyz_to_rgb(xyz_w) rgb_w = Hunt.adjust_white_for_scc(rgb, rgb_b, rgb_w, self._p) logger.debug("RGB_W: {}".format(rgb_w)) # Compute adapted tristimulus-responses rgb_c = self._white_adaption(rgb, rgb_w, d) logger.debug("RGB_C: {}".format(rgb_c)) rgb_cw = self._white_adaption(rgb_w, rgb_w, d) logger.debug("RGB_CW: {}".format(rgb_cw)) # Convert adapted tristimulus-responses to Hunt-Pointer-Estevez fundamentals rgb_p = self._compute_hunt_pointer_estevez_fundamentals(rgb_c) logger.debug("RGB': {}".format(rgb_p)) rgb_wp = self._compute_hunt_pointer_estevez_fundamentals(rgb_cw) logger.debug("RGB'_W: {}".format(rgb_wp)) # Compute post-adaptation non-linearities rgb_ap = self._compute_nonlinearities(f_l, rgb_p) rgb_awp = self._compute_nonlinearities(f_l, rgb_wp) return rgb_ap, rgb_awp
0.846768
0.510192
year = super(BuildableDayArchiveView, self).get_year() month = super(BuildableDayArchiveView, self).get_month() day = super(BuildableDayArchiveView, self).get_day() fmt = self.get_day_format() dt = date(int(year), int(month), int(day)) return dt.strftime(fmt)
def get_day(self)
Return the day from the database in the format expected by the URL.
2.811006
2.513987
1.118147
def get_day(self): """ Return the day from the database in the format expected by the URL. """ year = super(BuildableDayArchiveView, self).get_year() month = super(BuildableDayArchiveView, self).get_month() day = super(BuildableDayArchiveView, self).get_day() fmt = self.get_day_format() dt = date(int(year), int(month), int(day)) return dt.strftime(fmt)
0.576244
0.501038
if isinstance(p, str): p = string(p) return regex(r'\s*') >> p << regex(r'\s*')
def lexeme(p)
From a parser (or string), make a parser that consumes whitespace on either side.
5.255884
4.095832
1.283227
def lexeme(p): """ From a parser (or string), make a parser that consumes whitespace on either side. """ if isinstance(p, str): p = string(p) return regex(r'\s*') >> p << regex(r'\s*')
0.662524
0.660501
with open(schemafile) as f: return cls(json.load(f))
def from_schemafile(cls, schemafile)
Create a Flatson instance from a schemafile
3.612632
3.453533
1.046069
def from_schemafile(cls, schemafile): """ Create a Flatson instance from a schemafile """ with open(schemafile) as f: return cls(json.load(f))
0.562537
0.519643
if self._conn.status == psycopg2.extensions.STATUS_BEGIN: return self.READY return self._conn.status
def _status(self)
Return the current connection status as an integer value. The status should match one of the following constants: - queries.Session.INTRANS: Connection established, in transaction - queries.Session.PREPARED: Prepared for second phase of transaction - queries.Session.READY: Connected, no active transaction :rtype: int
7.788153
6.305507
1.235135
def _status(self): """ Return the current connection status as an integer value. The status should match one of the following constants: - queries.Session.INTRANS: Connection established, in transaction - queries.Session.PREPARED: Prepared for second phase of transaction - queries.Session.READY: Connected, no active transaction :rtype: int """ if self._conn.status == psycopg2.extensions.STATUS_BEGIN: return self.READY return self._conn.status
0.658253
0.533397
if not self.cursor.rowcount: return [] self.cursor.scroll(0, 'absolute') return self.cursor.fetchall()
def items(self)
Return all of the rows that are in the result set. :rtype: list
4.90019
4.43229
1.105566
def items(self): """ Return all of the rows that are in the result set. :rtype: list """ if not self.cursor.rowcount: return [] self.cursor.scroll(0, 'absolute') return self.cursor.fetchall()
0.715735
0.512998
if self.term.is_a_tty: return self.term.width // self.hint_width return 1
def num_columns(self)
Number of columns displayed.
13.668602
8.479787
1.611904
def num_columns(self): """ Number of columns displayed. """ if self.term.is_a_tty: return self.term.width // self.hint_width return 1
0.567817
0.664921
path_processor = ((lambda x : x) if path_prefix is None else get_rp_stripper(path_prefix)) reports = [] for result in bads: if len(result) == 3: depended_lib, depending_lib, missing_archs = result reports.append("{0} needs {1} {2} missing from {3}".format( path_processor(depending_lib), 'archs' if len(missing_archs) > 1 else 'arch', ', '.join(sorted(missing_archs)), path_processor(depended_lib))) elif len(result) == 2: depending_lib, missing_archs = result reports.append("Required {0} {1} missing from {2}".format( 'archs' if len(missing_archs) > 1 else 'arch', ', '.join(sorted(missing_archs)), path_processor(depending_lib))) else: raise ValueError('Report tuple should be length 2 or 3') return '\n'.join(sorted(reports))
def bads_report(bads, path_prefix=None)
Return a nice report of bad architectures in `bads` Parameters ---------- bads : set set of length 2 or 3 tuples. A length 2 tuple is of form ``(depending_lib, missing_archs)`` meaning that an arch in `require_archs` was missing from ``depending_lib``. A length 3 tuple is of form ``(depended_lib, depending_lib, missing_archs)`` where ``depended_lib`` is the filename of the library depended on, ``depending_lib`` is the library depending on ``depending_lib`` and ``missing_archs`` is a set of missing architecture strings giving architectures present in ``depending_lib`` and missing in ``depended_lib``. An empty set means all architectures were present as required. path_prefix : None or str, optional Path prefix to strip from ``depended_lib`` and ``depending_lib``. None means do not strip anything. Returns ------- report : str A nice report for printing
2.796139
2.235158
1.25098
def bads_report(bads, path_prefix=None): """ Return a nice report of bad architectures in `bads` Parameters ---------- bads : set set of length 2 or 3 tuples. A length 2 tuple is of form ``(depending_lib, missing_archs)`` meaning that an arch in `require_archs` was missing from ``depending_lib``. A length 3 tuple is of form ``(depended_lib, depending_lib, missing_archs)`` where ``depended_lib`` is the filename of the library depended on, ``depending_lib`` is the library depending on ``depending_lib`` and ``missing_archs`` is a set of missing architecture strings giving architectures present in ``depending_lib`` and missing in ``depended_lib``. An empty set means all architectures were present as required. path_prefix : None or str, optional Path prefix to strip from ``depended_lib`` and ``depending_lib``. None means do not strip anything. Returns ------- report : str A nice report for printing """ path_processor = ((lambda x : x) if path_prefix is None else get_rp_stripper(path_prefix)) reports = [] for result in bads: if len(result) == 3: depended_lib, depending_lib, missing_archs = result reports.append("{0} needs {1} {2} missing from {3}".format( path_processor(depending_lib), 'archs' if len(missing_archs) > 1 else 'arch', ', '.join(sorted(missing_archs)), path_processor(depended_lib))) elif len(result) == 2: depending_lib, missing_archs = result reports.append("Required {0} {1} missing from {2}".format( 'archs' if len(missing_archs) > 1 else 'arch', ', '.join(sorted(missing_archs)), path_processor(depending_lib))) else: raise ValueError('Report tuple should be length 2 or 3') return '\n'.join(sorted(reports))
0.813683
0.522994
if not lib_path.startswith('@rpath/'): return lib_path lib_rpath = lib_path.split('/', 1)[1] for rpath in rpaths: rpath_lib = realpath(pjoin(rpath, lib_rpath)) if os.path.exists(rpath_lib): return rpath_lib warnings.warn( "Couldn't find {0} on paths:\n\t{1}".format( lib_path, '\n\t'.join(realpath(path) for path in rpaths), ) ) return lib_path
def resolve_rpath(lib_path, rpaths)
Return `lib_path` with its `@rpath` resolved If the `lib_path` doesn't have `@rpath` then it's returned as is. If `lib_path` has `@rpath` then returns the first `rpaths`/`lib_path` combination found. If the library can't be found in `rpaths` then a detailed warning is printed and `lib_path` is returned as is. Parameters ---------- lib_path : str The path to a library file, which may or may not start with `@rpath`. rpaths : sequence of str A sequence of search paths, usually gotten from a call to `get_rpaths`. Returns ------- lib_path : str A str with the resolved libraries realpath.
2.451395
2.355479
1.04072
def resolve_rpath(lib_path, rpaths): """ Return `lib_path` with its `@rpath` resolved If the `lib_path` doesn't have `@rpath` then it's returned as is. If `lib_path` has `@rpath` then returns the first `rpaths`/`lib_path` combination found. If the library can't be found in `rpaths` then a detailed warning is printed and `lib_path` is returned as is. Parameters ---------- lib_path : str The path to a library file, which may or may not start with `@rpath`. rpaths : sequence of str A sequence of search paths, usually gotten from a call to `get_rpaths`. Returns ------- lib_path : str A str with the resolved libraries realpath. """ if not lib_path.startswith('@rpath/'): return lib_path lib_rpath = lib_path.split('/', 1)[1] for rpath in rpaths: rpath_lib = realpath(pjoin(rpath, lib_rpath)) if os.path.exists(rpath_lib): return rpath_lib warnings.warn( "Couldn't find {0} on paths:\n\t{1}".format( lib_path, '\n\t'.join(realpath(path) for path in rpaths), ) ) return lib_path
0.80354
0.54056
N = community.shape[0] C = community.shape[1] T = P = np.zeros([N, N]) for t in range(len(community[0, :])): for i in range(len(community[:, 0])): for j in range(len(community[:, 0])): if i == j: continue # T_ij indicates the number of times that i and j are assigned to the same community across time if community[i][t] == community[j][t]: T[i, j] += 1 # module allegiance matrix, probability that ij were assigned to the same community P = (1/C)*T return P
def allegiance(community)
Computes the allegiance matrix with values representing the probability that nodes i and j were assigned to the same community by time-varying clustering methods. parameters ---------- community : array array of community assignment of size node,time returns ------- P : array module allegiance matrix, with P_ij probability that area i and j are in the same community Reference: ---------- Bassett, et al. (2013) “Robust detection of dynamic community structure in networks”, Chaos, 23, 1
4.341524
3.232135
1.343237
def allegiance(community): """ Computes the allegiance matrix with values representing the probability that nodes i and j were assigned to the same community by time-varying clustering methods. parameters ---------- community : array array of community assignment of size node,time returns ------- P : array module allegiance matrix, with P_ij probability that area i and j are in the same community Reference: ---------- Bassett, et al. (2013) “Robust detection of dynamic community structure in networks”, Chaos, 23, 1 """ N = community.shape[0] C = community.shape[1] T = P = np.zeros([N, N]) for t in range(len(community[0, :])): for i in range(len(community[:, 0])): for j in range(len(community[:, 0])): if i == j: continue # T_ij indicates the number of times that i and j are assigned to the same community across time if community[i][t] == community[j][t]: T[i, j] += 1 # module allegiance matrix, probability that ij were assigned to the same community P = (1/C)*T return P
0.789518
0.815857
if isinstance(ncontacts, list): if len(ncontacts) != nnodes: raise ValueError( 'Number of contacts, if a list, should be one per node') if isinstance(lam, list): if len(lam) != nnodes: raise ValueError( 'Lambda value of Poisson distribution, if a list, should be one per node') if isinstance(lam, list) and not isinstance(ncontacts, list) or not isinstance(lam, list) and isinstance(ncontacts, list): raise ValueError( 'When one of lambda or ncontacts is given as a list, the other argument must also be a list.') if nettype == 'bu': edgen = int((nnodes*(nnodes-1))/2) elif nettype == 'bd': edgen = int(nnodes*nnodes) if not isinstance(lam, list) and not isinstance(ncontacts, list): icts = np.random.poisson(lam, size=(edgen, ncontacts)) net = np.zeros([edgen, icts.sum(axis=1).max()+1]) for n in range(edgen): net[n, np.unique(np.cumsum(icts[n]))] = 1 else: icts = [] ict_max = 0 for n in range(edgen): icts.append(np.random.poisson(lam[n], size=ncontacts[n])) if sum(icts[-1]) > ict_max: ict_max = sum(icts[-1]) net = np.zeros([nnodes, ict_max+1]) for n in range(nnodes): net[n, np.unique(np.cumsum(icts[n]))] = 1 if nettype == 'bu': nettmp = np.zeros([nnodes, nnodes, net.shape[-1]]) ind = np.triu_indices(nnodes, k=1) nettmp[ind[0], ind[1], :] = net net = nettmp + nettmp.transpose([1, 0, 2]) elif nettype == 'bd': net = net.reshape([nnodes, nnodes, net.shape[-1]], order='F') net = set_diagonal(net, 0) if netrep == 'contact': if not netinfo: netinfo = {} netinfo['nettype'] = 'b' + nettype[-1] net = graphlet2contact(net, netinfo) return net
def rand_poisson(nnodes, ncontacts, lam=1, nettype='bu', netinfo=None, netrep='graphlet')
Generate a random network where intervals between contacts are distributed by a poisson distribution Parameters ---------- nnodes : int Number of nodes in networks ncontacts : int or list Number of expected contacts (i.e. edges). If list, number of contacts for each node. Any zeros drawn are ignored so returned degree of network can be smaller than ncontacts. lam : int or list Expectation of interval. nettype : str 'bu' or 'bd' netinfo : dict Dictionary of additional information netrep : str How the output should be. If ncontacts is a list, so should lam. Returns ------- net : array or dict Random network with intervals between active edges being Poisson distributed.
2.343398
2.287699
1.024347
def rand_poisson(nnodes, ncontacts, lam=1, nettype='bu', netinfo=None, netrep='graphlet'): """ Generate a random network where intervals between contacts are distributed by a poisson distribution Parameters ---------- nnodes : int Number of nodes in networks ncontacts : int or list Number of expected contacts (i.e. edges). If list, number of contacts for each node. Any zeros drawn are ignored so returned degree of network can be smaller than ncontacts. lam : int or list Expectation of interval. nettype : str 'bu' or 'bd' netinfo : dict Dictionary of additional information netrep : str How the output should be. If ncontacts is a list, so should lam. Returns ------- net : array or dict Random network with intervals between active edges being Poisson distributed. """ if isinstance(ncontacts, list): if len(ncontacts) != nnodes: raise ValueError( 'Number of contacts, if a list, should be one per node') if isinstance(lam, list): if len(lam) != nnodes: raise ValueError( 'Lambda value of Poisson distribution, if a list, should be one per node') if isinstance(lam, list) and not isinstance(ncontacts, list) or not isinstance(lam, list) and isinstance(ncontacts, list): raise ValueError( 'When one of lambda or ncontacts is given as a list, the other argument must also be a list.') if nettype == 'bu': edgen = int((nnodes*(nnodes-1))/2) elif nettype == 'bd': edgen = int(nnodes*nnodes) if not isinstance(lam, list) and not isinstance(ncontacts, list): icts = np.random.poisson(lam, size=(edgen, ncontacts)) net = np.zeros([edgen, icts.sum(axis=1).max()+1]) for n in range(edgen): net[n, np.unique(np.cumsum(icts[n]))] = 1 else: icts = [] ict_max = 0 for n in range(edgen): icts.append(np.random.poisson(lam[n], size=ncontacts[n])) if sum(icts[-1]) > ict_max: ict_max = sum(icts[-1]) net = np.zeros([nnodes, ict_max+1]) for n in range(nnodes): net[n, np.unique(np.cumsum(icts[n]))] = 1 if nettype == 'bu': nettmp = np.zeros([nnodes, nnodes, net.shape[-1]]) ind = np.triu_indices(nnodes, k=1) nettmp[ind[0], ind[1], :] = net net = nettmp + nettmp.transpose([1, 0, 2]) elif nettype == 'bd': net = net.reshape([nnodes, nnodes, net.shape[-1]], order='F') net = set_diagonal(net, 0) if netrep == 'contact': if not netinfo: netinfo = {} netinfo['nettype'] = 'b' + nettype[-1] net = graphlet2contact(net, netinfo) return net
0.770422
0.568296
if not report: report = {} # Note the min value of all time series will now be at least 1. mindata = 1 - np.nanmin(data) data = data + mindata ind = np.triu_indices(data.shape[0], k=1) boxcox_list = np.array([sp.stats.boxcox(np.squeeze( data[ind[0][n], ind[1][n], :])) for n in range(0, len(ind[0]))]) boxcox_data = np.zeros(data.shape) boxcox_data[ind[0], ind[1], :] = np.vstack(boxcox_list[:, 0]) boxcox_data[ind[1], ind[0], :] = np.vstack(boxcox_list[:, 0]) bccheck = np.array(np.transpose(boxcox_data, [2, 0, 1])) bccheck = (bccheck - bccheck.mean(axis=0)) / bccheck.std(axis=0) bccheck = np.squeeze(np.mean(bccheck, axis=0)) np.fill_diagonal(bccheck, 0) report['boxcox'] = {} report['boxcox']['performed'] = 'yes' report['boxcox']['lambda'] = [ tuple([ind[0][n], ind[1][n], boxcox_list[n, -1]]) for n in range(0, len(ind[0]))] report['boxcox']['shift'] = mindata report['boxcox']['shited_to'] = 1 if np.sum(np.isnan(bccheck)) > 0: report['boxcox'] = {} report['boxcox']['performed'] = 'FAILED' report['boxcox']['failure_reason'] = ( 'Box cox transform is returning edges with uniform values through time. ' 'This is probabaly due to one or more outliers or a very skewed distribution. ' 'Have you corrected for sources of noise (e.g. movement)? ' 'If yes, some time-series might need additional transforms to approximate to Gaussian.' ) report['boxcox']['failure_consequence'] = ( 'Box cox transform was skipped from the postprocess pipeline.' ) boxcox_data = data - mindata error_msg = ('TENETO WARNING: Box Cox transform problem. \n' 'Box Cox transform not performed. \n' 'See report for more details.') print(error_msg) return boxcox_data, report
def postpro_boxcox(data, report=None)
Performs box cox transform on everything in data. If report variable is passed, this is added to the report.
3.859484
3.796534
1.016581
def postpro_boxcox(data, report=None): """ Performs box cox transform on everything in data. If report variable is passed, this is added to the report. """ if not report: report = {} # Note the min value of all time series will now be at least 1. mindata = 1 - np.nanmin(data) data = data + mindata ind = np.triu_indices(data.shape[0], k=1) boxcox_list = np.array([sp.stats.boxcox(np.squeeze( data[ind[0][n], ind[1][n], :])) for n in range(0, len(ind[0]))]) boxcox_data = np.zeros(data.shape) boxcox_data[ind[0], ind[1], :] = np.vstack(boxcox_list[:, 0]) boxcox_data[ind[1], ind[0], :] = np.vstack(boxcox_list[:, 0]) bccheck = np.array(np.transpose(boxcox_data, [2, 0, 1])) bccheck = (bccheck - bccheck.mean(axis=0)) / bccheck.std(axis=0) bccheck = np.squeeze(np.mean(bccheck, axis=0)) np.fill_diagonal(bccheck, 0) report['boxcox'] = {} report['boxcox']['performed'] = 'yes' report['boxcox']['lambda'] = [ tuple([ind[0][n], ind[1][n], boxcox_list[n, -1]]) for n in range(0, len(ind[0]))] report['boxcox']['shift'] = mindata report['boxcox']['shited_to'] = 1 if np.sum(np.isnan(bccheck)) > 0: report['boxcox'] = {} report['boxcox']['performed'] = 'FAILED' report['boxcox']['failure_reason'] = ( 'Box cox transform is returning edges with uniform values through time. ' 'This is probabaly due to one or more outliers or a very skewed distribution. ' 'Have you corrected for sources of noise (e.g. movement)? ' 'If yes, some time-series might need additional transforms to approximate to Gaussian.' ) report['boxcox']['failure_consequence'] = ( 'Box cox transform was skipped from the postprocess pipeline.' ) boxcox_data = data - mindata error_msg = ('TENETO WARNING: Box Cox transform problem. \n' 'Box Cox transform not performed. \n' 'See report for more details.') print(error_msg) return boxcox_data, report
0.578389
0.546073
# Data should be timexnode report = {} # Derivative tdat = data[1:, :] - data[:-1, :] # Normalize tdat = tdat / np.std(tdat, axis=0) # Coupling coupling = np.array([tdat[:, i] * tdat[:, j] for i in np.arange(0, tdat.shape[1]) for j in np.arange(0, tdat.shape[1])]) coupling = np.reshape( coupling, [tdat.shape[1], tdat.shape[1], tdat.shape[0]]) # Average over window using strides shape = coupling.shape[:-1] + (coupling.shape[-1] - params['windowsize'] + 1, params['windowsize']) strides = coupling.strides + (coupling.strides[-1],) coupling_windowed = np.mean(np.lib.stride_tricks.as_strided( coupling, shape=shape, strides=strides), -1) report = {} report['method'] = 'temporalderivative' report['temporalderivative'] = {} report['temporalderivative']['windowsize'] = params['windowsize'] return coupling_windowed, report
def _temporal_derivative(data, params, report)
Performs mtd method. See func: teneto.derive.derive.
3.043904
3.043396
1.000167
def _temporal_derivative(data, params, report): """ Performs mtd method. See func: teneto.derive.derive. """ # Data should be timexnode report = {} # Derivative tdat = data[1:, :] - data[:-1, :] # Normalize tdat = tdat / np.std(tdat, axis=0) # Coupling coupling = np.array([tdat[:, i] * tdat[:, j] for i in np.arange(0, tdat.shape[1]) for j in np.arange(0, tdat.shape[1])]) coupling = np.reshape( coupling, [tdat.shape[1], tdat.shape[1], tdat.shape[0]]) # Average over window using strides shape = coupling.shape[:-1] + (coupling.shape[-1] - params['windowsize'] + 1, params['windowsize']) strides = coupling.strides + (coupling.strides[-1],) coupling_windowed = np.mean(np.lib.stride_tricks.as_strided( coupling, shape=shape, strides=strides), -1) report = {} report['method'] = 'temporalderivative' report['temporalderivative'] = {} report['temporalderivative']['windowsize'] = params['windowsize'] return coupling_windowed, report
0.729496
0.605391
if threshold_type == 'percent': netout = binarize_percent(netin, threshold_level, sign, axis) elif threshold_type == 'magnitude': netout = binarize_magnitude(netin, threshold_level, sign) elif threshold_type == 'rdp': netout = binarize_rdp(netin, threshold_level, sign, axis) else: raise ValueError('Unknown value to parameter: threshold_type.') return netout
def binarize(netin, threshold_type, threshold_level, sign='pos', axis='time')
Binarizes a network, returning the network. General wrapper function for different binarization functions. Parameters ---------- netin : array or dict Network (graphlet or contact representation), threshold_type : str What type of thresholds to make binarization. Options: 'rdp', 'percent', 'magnitude'. threshold_level : str Paramter dependent on threshold type. If 'rdp', it is the delta (i.e. error allowed in compression). If 'percent', it is the percentage to keep (e.g. 0.1, means keep 10% of signal). If 'magnitude', it is the amplitude of signal to keep. sign : str, default='pos' States the sign of the thresholding. Can be 'pos', 'neg' or 'both'. If "neg", only negative values are thresholded and vice versa. axis : str Threshold over specfied axis. Valid for percent and rdp. Can be time or graphlet. Returns ------- netout : array or dict (depending on input) Binarized network
2.25078
2.055175
1.095177
def binarize(netin, threshold_type, threshold_level, sign='pos', axis='time'): """ Binarizes a network, returning the network. General wrapper function for different binarization functions. Parameters ---------- netin : array or dict Network (graphlet or contact representation), threshold_type : str What type of thresholds to make binarization. Options: 'rdp', 'percent', 'magnitude'. threshold_level : str Paramter dependent on threshold type. If 'rdp', it is the delta (i.e. error allowed in compression). If 'percent', it is the percentage to keep (e.g. 0.1, means keep 10% of signal). If 'magnitude', it is the amplitude of signal to keep. sign : str, default='pos' States the sign of the thresholding. Can be 'pos', 'neg' or 'both'. If "neg", only negative values are thresholded and vice versa. axis : str Threshold over specfied axis. Valid for percent and rdp. Can be time or graphlet. Returns ------- netout : array or dict (depending on input) Binarized network """ if threshold_type == 'percent': netout = binarize_percent(netin, threshold_level, sign, axis) elif threshold_type == 'magnitude': netout = binarize_magnitude(netin, threshold_level, sign) elif threshold_type == 'rdp': netout = binarize_rdp(netin, threshold_level, sign, axis) else: raise ValueError('Unknown value to parameter: threshold_type.') return netout
0.881385
0.869604
inputtype = checkInput(netIn) # Convert TN to G representation if inputtype == 'TN' and 'TN' in allowedformats and outputformat != 'TN': G = netIn.df_to_array() netInfo = {'nettype': netIn.nettype, 'netshape': netIn.netshape} elif inputtype == 'TN' and 'TN' in allowedformats and outputformat == 'TN': TN = netIn elif inputtype == 'C' and 'C' in allowedformats and outputformat == 'G': G = contact2graphlet(netIn) netInfo = dict(netIn) netInfo.pop('contacts') elif inputtype == 'C' and 'C' in allowedformats and outputformat == 'TN': TN = TemporalNetwork(from_dict=netIn) elif inputtype == 'G' and 'G' in allowedformats and outputformat == 'TN': TN = TemporalNetwork(from_array=netIn) # Get network type if not set yet elif inputtype == 'G' and 'G' in allowedformats: netInfo = {} netInfo['netshape'] = netIn.shape netInfo['nettype'] = gen_nettype(netIn) G = netIn elif inputtype == 'C' and outputformat == 'C': pass else: raise ValueError('Input invalid.') if outputformat == 'TN' and not isinstance(TN.network, str): TN.network['i'] = TN.network['i'].astype(int) TN.network['j'] = TN.network['j'].astype(int) TN.network['t'] = TN.network['t'].astype(int) if outputformat == 'C' or outputformat == 'G': netInfo['inputtype'] = inputtype if inputtype != 'C' and outputformat == 'C': C = graphlet2contact(G, netInfo) if outputformat == 'G': return G, netInfo elif outputformat == 'C': return C elif outputformat == 'TN': return TN
def process_input(netIn, allowedformats, outputformat='G')
Takes input network and checks what the input is. Parameters ---------- netIn : array, dict, or TemporalNetwork Network (graphlet, contact or object) allowedformats : str Which format of network objects that are allowed. Options: 'C', 'TN', 'G'. outputformat: str, default=G Target output format. Options: 'C' or 'G'. Returns ------- C : dict OR G : array Graphlet representation. netInfo : dict Metainformation about network. OR tnet : object object of TemporalNetwork class
2.646709
2.436064
1.086469
def process_input(netIn, allowedformats, outputformat='G'): """ Takes input network and checks what the input is. Parameters ---------- netIn : array, dict, or TemporalNetwork Network (graphlet, contact or object) allowedformats : str Which format of network objects that are allowed. Options: 'C', 'TN', 'G'. outputformat: str, default=G Target output format. Options: 'C' or 'G'. Returns ------- C : dict OR G : array Graphlet representation. netInfo : dict Metainformation about network. OR tnet : object object of TemporalNetwork class """ inputtype = checkInput(netIn) # Convert TN to G representation if inputtype == 'TN' and 'TN' in allowedformats and outputformat != 'TN': G = netIn.df_to_array() netInfo = {'nettype': netIn.nettype, 'netshape': netIn.netshape} elif inputtype == 'TN' and 'TN' in allowedformats and outputformat == 'TN': TN = netIn elif inputtype == 'C' and 'C' in allowedformats and outputformat == 'G': G = contact2graphlet(netIn) netInfo = dict(netIn) netInfo.pop('contacts') elif inputtype == 'C' and 'C' in allowedformats and outputformat == 'TN': TN = TemporalNetwork(from_dict=netIn) elif inputtype == 'G' and 'G' in allowedformats and outputformat == 'TN': TN = TemporalNetwork(from_array=netIn) # Get network type if not set yet elif inputtype == 'G' and 'G' in allowedformats: netInfo = {} netInfo['netshape'] = netIn.shape netInfo['nettype'] = gen_nettype(netIn) G = netIn elif inputtype == 'C' and outputformat == 'C': pass else: raise ValueError('Input invalid.') if outputformat == 'TN' and not isinstance(TN.network, str): TN.network['i'] = TN.network['i'].astype(int) TN.network['j'] = TN.network['j'].astype(int) TN.network['t'] = TN.network['t'].astype(int) if outputformat == 'C' or outputformat == 'G': netInfo['inputtype'] = inputtype if inputtype != 'C' and outputformat == 'C': C = graphlet2contact(G, netInfo) if outputformat == 'G': return G, netInfo elif outputformat == 'C': return C elif outputformat == 'TN': return TN
0.740737
0.682097
d = collections.OrderedDict() for c in C['contacts']: ct = tuple(c) if ct in d: d[ct] += 1 else: d[ct] = 1 new_contacts = [] new_values = [] for (key, value) in d.items(): new_values.append(value) new_contacts.append(key) C_out = C C_out['contacts'] = new_contacts C_out['values'] = new_values return C_out
def multiple_contacts_get_values(C)
Given an contact representation with repeated contacts, this function removes duplicates and creates a value Parameters ---------- C : dict contact representation with multiple repeated contacts. Returns ------- :C_out: dict Contact representation with duplicate contacts removed and the number of duplicates is now in the 'values' field.
2.388001
2.190151
1.090336
def multiple_contacts_get_values(C): """ Given an contact representation with repeated contacts, this function removes duplicates and creates a value Parameters ---------- C : dict contact representation with multiple repeated contacts. Returns ------- :C_out: dict Contact representation with duplicate contacts removed and the number of duplicates is now in the 'values' field. """ d = collections.OrderedDict() for c in C['contacts']: ct = tuple(c) if ct in d: d[ct] += 1 else: d[ct] = 1 new_contacts = [] new_values = [] for (key, value) in d.items(): new_values.append(value) new_contacts.append(key) C_out = C C_out['contacts'] = new_contacts C_out['values'] = new_values return C_out
0.820343
0.676834
if len(df) > 0: idx = np.array(list(map(list, df.values))) G = np.zeros([netshape[0], netshape[0], netshape[1]]) if idx.shape[1] == 3: if nettype[-1] == 'u': idx = np.vstack([idx, idx[:, [1, 0, 2]]]) idx = idx.astype(int) G[idx[:, 0], idx[:, 1], idx[:, 2]] = 1 elif idx.shape[1] == 4: if nettype[-1] == 'u': idx = np.vstack([idx, idx[:, [1, 0, 2, 3]]]) weights = idx[:, 3] idx = np.array(idx[:, :3], dtype=int) G[idx[:, 0], idx[:, 1], idx[:, 2]] = weights else: G = np.zeros([netshape[0], netshape[0], netshape[1]]) return G
def df_to_array(df, netshape, nettype)
Returns a numpy array (snapshot representation) from thedataframe contact list Parameters: df : pandas df pandas df with columns, i,j,t. netshape : tuple network shape, format: (node, time) nettype : str 'wu', 'wd', 'bu', 'bd' Returns: -------- G : array (node,node,time) array for the network
1.946345
1.890199
1.029704
def df_to_array(df, netshape, nettype): """ Returns a numpy array (snapshot representation) from thedataframe contact list Parameters: df : pandas df pandas df with columns, i,j,t. netshape : tuple network shape, format: (node, time) nettype : str 'wu', 'wd', 'bu', 'bd' Returns: -------- G : array (node,node,time) array for the network """ if len(df) > 0: idx = np.array(list(map(list, df.values))) G = np.zeros([netshape[0], netshape[0], netshape[1]]) if idx.shape[1] == 3: if nettype[-1] == 'u': idx = np.vstack([idx, idx[:, [1, 0, 2]]]) idx = idx.astype(int) G[idx[:, 0], idx[:, 1], idx[:, 2]] = 1 elif idx.shape[1] == 4: if nettype[-1] == 'u': idx = np.vstack([idx, idx[:, [1, 0, 2, 3]]]) weights = idx[:, 3] idx = np.array(idx[:, :3], dtype=int) G[idx[:, 0], idx[:, 1], idx[:, 2]] = weights else: G = np.zeros([netshape[0], netshape[0], netshape[1]]) return G
0.704592
0.628835
if distance_func_name == 'default' and netinfo['nettype'][0] == 'b': print('Default distance funciton specified. As network is binary, using Hamming') distance_func_name = 'hamming' elif distance_func_name == 'default' and netinfo['nettype'][0] == 'w': distance_func_name = 'euclidean' print( 'Default distance funciton specified. ' 'As network is weighted, using Euclidean') return distance_func_name
def check_distance_funciton_input(distance_func_name, netinfo)
Funciton checks distance_func_name, if it is specified as 'default'. Then given the type of the network selects a default distance function. Parameters ---------- distance_func_name : str distance function name. netinfo : dict the output of utils.process_input Returns ------- distance_func_name : str distance function name.
3.215411
3.008744
1.068689
def check_distance_funciton_input(distance_func_name, netinfo): """ Funciton checks distance_func_name, if it is specified as 'default'. Then given the type of the network selects a default distance function. Parameters ---------- distance_func_name : str distance function name. netinfo : dict the output of utils.process_input Returns ------- distance_func_name : str distance function name. """ if distance_func_name == 'default' and netinfo['nettype'][0] == 'b': print('Default distance funciton specified. As network is binary, using Hamming') distance_func_name = 'hamming' elif distance_func_name == 'default' and netinfo['nettype'][0] == 'w': distance_func_name = 'euclidean' print( 'Default distance funciton specified. ' 'As network is weighted, using Euclidean') return distance_func_name
0.871229
0.568895
if isinstance(parcellation, str): parcin = '' if '+' in parcellation: parcin = parcellation parcellation = parcellation.split('+')[0] if '+OH' in parcin: subcortical = True else: subcortical = None if '+SUIT' in parcin: cerebellar = True else: cerebellar = None if not parc_type or not parc_params: path = tenetopath[0] + '/data/parcellation_defaults/defaults.json' with open(path) as data_file: defaults = json.load(data_file) if not parc_type: parc_type = defaults[parcellation]['type'] print('Using default parcellation type') if not parc_params: parc_params = defaults[parcellation]['params'] print('Using default parameters') if parc_type == 'sphere': parcellation = load_parcellation_coords(parcellation) seed = NiftiSpheresMasker(np.array(parcellation), **parc_params) data = seed.fit_transform(data_path) elif parc_type == 'region': path = tenetopath[0] + '/data/parcellation/' + parcellation + '.nii.gz' region = NiftiLabelsMasker(path, **parc_params) data = region.fit_transform(data_path) else: raise ValueError('Unknown parc_type specified') if subcortical: subatlas = fetch_atlas_harvard_oxford('sub-maxprob-thr0-2mm')['maps'] region = NiftiLabelsMasker(subatlas, **parc_params) data_sub = region.fit_transform(data_path) data = np.hstack([data, data_sub]) if cerebellar: path = tenetopath[0] + '/data/parcellation/Cerebellum-SUIT_space-MNI152NLin2009cAsym.nii.gz' region = NiftiLabelsMasker(path, **parc_params) data_cerebellar = region.fit_transform(data_path) data = np.hstack([data, data_cerebellar]) return data
def make_parcellation(data_path, parcellation, parc_type=None, parc_params=None)
Performs a parcellation which reduces voxel space to regions of interest (brain data). Parameters ---------- data_path : str Path to .nii image. parcellation : str Specify which parcellation that you would like to use. For MNI: 'gordon2014_333', 'power2012_264', For TAL: 'shen2013_278'. It is possible to add the OH subcotical atlas on top of a cortical atlas (e.g. gordon) by adding: '+OH' (for oxford harvard subcortical atlas) and '+SUIT' for SUIT cerebellar atlas. e.g.: gordon2014_333+OH+SUIT' parc_type : str Can be 'sphere' or 'region'. If nothing is specified, the default for that parcellation will be used. parc_params : dict **kwargs for nilearn functions Returns ------- data : array Data after the parcellation. NOTE ---- These functions make use of nilearn. Please cite nilearn if used in a publicaiton.
2.531412
2.223121
1.138675
def make_parcellation(data_path, parcellation, parc_type=None, parc_params=None): """ Performs a parcellation which reduces voxel space to regions of interest (brain data). Parameters ---------- data_path : str Path to .nii image. parcellation : str Specify which parcellation that you would like to use. For MNI: 'gordon2014_333', 'power2012_264', For TAL: 'shen2013_278'. It is possible to add the OH subcotical atlas on top of a cortical atlas (e.g. gordon) by adding: '+OH' (for oxford harvard subcortical atlas) and '+SUIT' for SUIT cerebellar atlas. e.g.: gordon2014_333+OH+SUIT' parc_type : str Can be 'sphere' or 'region'. If nothing is specified, the default for that parcellation will be used. parc_params : dict **kwargs for nilearn functions Returns ------- data : array Data after the parcellation. NOTE ---- These functions make use of nilearn. Please cite nilearn if used in a publicaiton. """ if isinstance(parcellation, str): parcin = '' if '+' in parcellation: parcin = parcellation parcellation = parcellation.split('+')[0] if '+OH' in parcin: subcortical = True else: subcortical = None if '+SUIT' in parcin: cerebellar = True else: cerebellar = None if not parc_type or not parc_params: path = tenetopath[0] + '/data/parcellation_defaults/defaults.json' with open(path) as data_file: defaults = json.load(data_file) if not parc_type: parc_type = defaults[parcellation]['type'] print('Using default parcellation type') if not parc_params: parc_params = defaults[parcellation]['params'] print('Using default parameters') if parc_type == 'sphere': parcellation = load_parcellation_coords(parcellation) seed = NiftiSpheresMasker(np.array(parcellation), **parc_params) data = seed.fit_transform(data_path) elif parc_type == 'region': path = tenetopath[0] + '/data/parcellation/' + parcellation + '.nii.gz' region = NiftiLabelsMasker(path, **parc_params) data = region.fit_transform(data_path) else: raise ValueError('Unknown parc_type specified') if subcortical: subatlas = fetch_atlas_harvard_oxford('sub-maxprob-thr0-2mm')['maps'] region = NiftiLabelsMasker(subatlas, **parc_params) data_sub = region.fit_transform(data_path) data = np.hstack([data, data_sub]) if cerebellar: path = tenetopath[0] + '/data/parcellation/Cerebellum-SUIT_space-MNI152NLin2009cAsym.nii.gz' region = NiftiLabelsMasker(path, **parc_params) data_cerebellar = region.fit_transform(data_path) data = np.hstack([data, data_cerebellar]) return data
0.750238
0.540318
steps = (1.0/(N-1)) * (stop - start) if np.isscalar(steps): return steps*np.arange(N) + start else: return steps[:, None]*np.arange(N) + start[:, None]
def create_traj_ranges(start, stop, N)
Fills in the trajectory range. # Adapted from https://stackoverflow.com/a/40624614
3.039685
2.983643
1.018783
def create_traj_ranges(start, stop, N): """ Fills in the trajectory range. # Adapted from https://stackoverflow.com/a/40624614 """ steps = (1.0/(N-1)) * (stop - start) if np.isscalar(steps): return steps*np.arange(N) + start else: return steps[:, None]*np.arange(N) + start[:, None]
0.559892
0.509642
newnetwork = tnet.network.copy() newnetwork['i'] = (tnet.network['i']) + \ ((tnet.netshape[0]) * (tnet.network['t'])) newnetwork['j'] = (tnet.network['j']) + \ ((tnet.netshape[0]) * (tnet.network['t'])) if 'weight' not in newnetwork.columns: newnetwork['weight'] = 1 newnetwork.drop('t', axis=1, inplace=True) timepointconns = pd.DataFrame() timepointconns['i'] = np.arange(0, (tnet.N*tnet.T)-tnet.N) timepointconns['j'] = np.arange(tnet.N, (tnet.N*tnet.T)) timepointconns['weight'] = intersliceweight supranet = pd.concat([newnetwork, timepointconns]).reset_index(drop=True) return supranet
def create_supraadjacency_matrix(tnet, intersliceweight=1)
Returns a supraadjacency matrix from a temporal network structure Parameters -------- tnet : TemporalNetwork Temporal network (any network type) intersliceweight : int Weight that links the same node from adjacent time-points Returns -------- supranet : dataframe Supraadjacency matrix
2.527046
2.362498
1.06965
def create_supraadjacency_matrix(tnet, intersliceweight=1): """ Returns a supraadjacency matrix from a temporal network structure Parameters -------- tnet : TemporalNetwork Temporal network (any network type) intersliceweight : int Weight that links the same node from adjacent time-points Returns -------- supranet : dataframe Supraadjacency matrix """ newnetwork = tnet.network.copy() newnetwork['i'] = (tnet.network['i']) + \ ((tnet.netshape[0]) * (tnet.network['t'])) newnetwork['j'] = (tnet.network['j']) + \ ((tnet.netshape[0]) * (tnet.network['t'])) if 'weight' not in newnetwork.columns: newnetwork['weight'] = 1 newnetwork.drop('t', axis=1, inplace=True) timepointconns = pd.DataFrame() timepointconns['i'] = np.arange(0, (tnet.N*tnet.T)-tnet.N) timepointconns['j'] = np.arange(tnet.N, (tnet.N*tnet.T)) timepointconns['weight'] = intersliceweight supranet = pd.concat([newnetwork, timepointconns]).reset_index(drop=True) return supranet
0.846308
0.652158
r com_membership = np.array(com_membership) D = [] for i in range(com_membership.shape[0]): for j in range(i+1, com_membership.shape[0]): con = np.sum((com_membership[i, :] - com_membership[j, :]) == 0, axis=-1) / com_membership.shape[-1] twhere = np.where(con > th)[0] D += list(zip(*[np.repeat(i, len(twhere)).tolist(), np.repeat(j, len(twhere)).tolist(), twhere.tolist(), con[twhere].tolist()])) if len(D) > 0: D = pd.DataFrame(D, columns=['i', 'j', 't', 'weight']) D = TemporalNetwork(from_df=D) D = create_supraadjacency_matrix(D, intersliceweight=0) Dnx = tnet_to_nx(D) else: Dnx = None return Dnx
def make_consensus_matrix(com_membership, th=0.5)
r""" Makes the consensus matrix . Parameters ---------- com_membership : array Shape should be node, time, iteration. th : float threshold to cancel noisey edges Returns ------- D : array consensus matrix
3.630805
3.608872
1.006077
def make_consensus_matrix(com_membership, th=0.5): """ r""" Makes the consensus matrix . Parameters ---------- com_membership : array Shape should be node, time, iteration. th : float threshold to cancel noisey edges Returns ------- D : array consensus matrix """ r com_membership = np.array(com_membership) D = [] for i in range(com_membership.shape[0]): for j in range(i+1, com_membership.shape[0]): con = np.sum((com_membership[i, :] - com_membership[j, :]) == 0, axis=-1) / com_membership.shape[-1] twhere = np.where(con > th)[0] D += list(zip(*[np.repeat(i, len(twhere)).tolist(), np.repeat(j, len(twhere)).tolist(), twhere.tolist(), con[twhere].tolist()])) if len(D) > 0: D = pd.DataFrame(D, columns=['i', 'j', 't', 'weight']) D = TemporalNetwork(from_df=D) D = create_supraadjacency_matrix(D, intersliceweight=0) Dnx = tnet_to_nx(D) else: Dnx = None return Dnx
0.793316
0.604428
r com_membership = np.array(com_membership) # make first indicies be between 0 and 1. com_membership[:, 0] = clean_community_indexes(com_membership[:, 0]) # loop over all timepoints, get jacccard distance in greedy manner for largest community to time period before for t in range(1, com_membership.shape[1]): ct, counts_t = np.unique(com_membership[:, t], return_counts=True) ct = ct[np.argsort(counts_t)[::-1]] c1back = np.unique(com_membership[:, t-1]) new_index = np.zeros(com_membership.shape[0]) for n in ct: if len(c1back) > 0: d = np.ones(int(c1back.max())+1) for m in c1back: v1 = np.zeros(com_membership.shape[0]) v2 = np.zeros(com_membership.shape[0]) v1[com_membership[:, t] == n] = 1 v2[com_membership[:, t-1] == m] = 1 d[int(m)] = jaccard(v1, v2) bestval = np.argmin(d) else: bestval = new_index.max() + 1 new_index[com_membership[:, t] == n] = bestval c1back = np.array(np.delete(c1back, np.where(c1back == bestval))) com_membership[:, t] = new_index return com_membership
def make_temporal_consensus(com_membership)
r""" Matches community labels accross time-points Jaccard matching is in a greedy fashiong. Matching the largest community at t with the community at t-1. Parameters ---------- com_membership : array Shape should be node, time. Returns ------- D : array temporal consensus matrix using Jaccard distance
3.279249
3.015183
1.087579
def make_temporal_consensus(com_membership): """ r""" Matches community labels accross time-points Jaccard matching is in a greedy fashiong. Matching the largest community at t with the community at t-1. Parameters ---------- com_membership : array Shape should be node, time. Returns ------- D : array temporal consensus matrix using Jaccard distance """ r com_membership = np.array(com_membership) # make first indicies be between 0 and 1. com_membership[:, 0] = clean_community_indexes(com_membership[:, 0]) # loop over all timepoints, get jacccard distance in greedy manner for largest community to time period before for t in range(1, com_membership.shape[1]): ct, counts_t = np.unique(com_membership[:, t], return_counts=True) ct = ct[np.argsort(counts_t)[::-1]] c1back = np.unique(com_membership[:, t-1]) new_index = np.zeros(com_membership.shape[0]) for n in ct: if len(c1back) > 0: d = np.ones(int(c1back.max())+1) for m in c1back: v1 = np.zeros(com_membership.shape[0]) v2 = np.zeros(com_membership.shape[0]) v1[com_membership[:, t] == n] = 1 v2[com_membership[:, t-1] == m] = 1 d[int(m)] = jaccard(v1, v2) bestval = np.argmin(d) else: bestval = new_index.max() + 1 new_index[com_membership[:, t] == n] = bestval c1back = np.array(np.delete(c1back, np.where(c1back == bestval))) com_membership[:, t] = new_index return com_membership
0.821778
0.665954
# Preallocate flex = np.zeros(communities.shape[0]) # Go from the second time point to last, compare with time-point before for t in range(1, communities.shape[1]): flex[communities[:, t] != communities[:, t-1]] += 1 # Normalize flex = flex / (communities.shape[1] - 1) return flex
def flexibility(communities)
Amount a node changes community Parameters ---------- communities : array Community array of shape (node,time) Returns -------- flex : array Size with the flexibility of each node. Notes ----- Flexbility calculates the number of times a node switches its community label during a time series. It is normalized by the number of possible changes which could occur. It is important to make sure that the different community labels accross time points are not artbirary. References ----------- Bassett, DS, Wymbs N, Porter MA, Mucha P, Carlson JM, Grafton ST. Dynamic reconfiguration of human brain networks during learning. PNAS, 2011, 108(18):7641-6.
4.733977
3.730659
1.268938
def flexibility(communities): """ Amount a node changes community Parameters ---------- communities : array Community array of shape (node,time) Returns -------- flex : array Size with the flexibility of each node. Notes ----- Flexbility calculates the number of times a node switches its community label during a time series. It is normalized by the number of possible changes which could occur. It is important to make sure that the different community labels accross time points are not artbirary. References ----------- Bassett, DS, Wymbs N, Porter MA, Mucha P, Carlson JM, Grafton ST. Dynamic reconfiguration of human brain networks during learning. PNAS, 2011, 108(18):7641-6. """ # Preallocate flex = np.zeros(communities.shape[0]) # Go from the second time point to last, compare with time-point before for t in range(1, communities.shape[1]): flex[communities[:, t] != communities[:, t-1]] += 1 # Normalize flex = flex / (communities.shape[1] - 1) return flex
0.837437
0.808729
relfun = [] threshold = [] for ec in exclusion_criteria: if ec[0:2] == '>=': relfun.append(np.greater_equal) threshold.append(float(ec[2:])) elif ec[0:2] == '<=': relfun.append(np.less_equal) threshold.append(float(ec[2:])) elif ec[0] == '>': relfun.append(np.greater) threshold.append(float(ec[1:])) elif ec[0] == '<': relfun.append(np.less) threshold.append(float(ec[1:])) else: raise ValueError('exclusion crieria must being with >,<,>= or <=') return relfun, threshold
def process_exclusion_criteria(exclusion_criteria)
Parses an exclusion critera string to get the function and threshold. Parameters ---------- exclusion_criteria : list list of strings where each string is of the format [relation][threshold]. E.g. \'<0.5\' or \'>=1\' Returns ------- relfun : list list of numpy functions for the exclusion criteria threshold : list list of floats for threshold for each relfun
2.13075
1.827252
1.166095
def process_exclusion_criteria(exclusion_criteria): """ Parses an exclusion critera string to get the function and threshold. Parameters ---------- exclusion_criteria : list list of strings where each string is of the format [relation][threshold]. E.g. \'<0.5\' or \'>=1\' Returns ------- relfun : list list of numpy functions for the exclusion criteria threshold : list list of floats for threshold for each relfun """ relfun = [] threshold = [] for ec in exclusion_criteria: if ec[0:2] == '>=': relfun.append(np.greater_equal) threshold.append(float(ec[2:])) elif ec[0:2] == '<=': relfun.append(np.less_equal) threshold.append(float(ec[2:])) elif ec[0] == '>': relfun.append(np.greater) threshold.append(float(ec[1:])) elif ec[0] == '<': relfun.append(np.less) threshold.append(float(ec[1:])) else: raise ValueError('exclusion crieria must being with >,<,>= or <=') return relfun, threshold
0.776999
0.627866
# make sure the static and temporal communities have the same number of nodes if staticcommunities.shape[0] != temporalcommunities.shape[0]: raise ValueError( 'Temporal and static communities have different dimensions') alleg = allegiance(temporalcommunities) Rcoeff = np.zeros(len(staticcommunities)) for i, statcom in enumerate(staticcommunities): Rcoeff[i] = np.mean(alleg[i, staticcommunities == statcom]) return Rcoeff
def recruitment(temporalcommunities, staticcommunities)
Calculates recruitment coefficient for each node. Recruitment coefficient is the average probability of nodes from the same static communities being in the same temporal communities at other time-points or during different tasks. Parameters: ------------ temporalcommunities : array temporal communities vector (node,time) staticcommunities : array Static communities vector for each node Returns: ------- Rcoeff : array recruitment coefficient for each node References: ----------- Danielle S. Bassett, Muzhi Yang, Nicholas F. Wymbs, Scott T. Grafton. Learning-Induced Autonomy of Sensorimotor Systems. Nat Neurosci. 2015 May;18(5):744-51. Marcelo Mattar, Michael W. Cole, Sharon Thompson-Schill, Danielle S. Bassett. A Functional Cartography of Cognitive Systems. PLoS Comput Biol. 2015 Dec 2;11(12):e1004533.
3.982296
3.488743
1.14147
def recruitment(temporalcommunities, staticcommunities): """ Calculates recruitment coefficient for each node. Recruitment coefficient is the average probability of nodes from the same static communities being in the same temporal communities at other time-points or during different tasks. Parameters: ------------ temporalcommunities : array temporal communities vector (node,time) staticcommunities : array Static communities vector for each node Returns: ------- Rcoeff : array recruitment coefficient for each node References: ----------- Danielle S. Bassett, Muzhi Yang, Nicholas F. Wymbs, Scott T. Grafton. Learning-Induced Autonomy of Sensorimotor Systems. Nat Neurosci. 2015 May;18(5):744-51. Marcelo Mattar, Michael W. Cole, Sharon Thompson-Schill, Danielle S. Bassett. A Functional Cartography of Cognitive Systems. PLoS Comput Biol. 2015 Dec 2;11(12):e1004533. """ # make sure the static and temporal communities have the same number of nodes if staticcommunities.shape[0] != temporalcommunities.shape[0]: raise ValueError( 'Temporal and static communities have different dimensions') alleg = allegiance(temporalcommunities) Rcoeff = np.zeros(len(staticcommunities)) for i, statcom in enumerate(staticcommunities): Rcoeff[i] = np.mean(alleg[i, staticcommunities == statcom]) return Rcoeff
0.872102
0.748168
# make sure the static and temporal communities have the same number of nodes if staticcommunities.shape[0] != temporalcommunities.shape[0]: raise ValueError( 'Temporal and static communities have different dimensions') alleg = allegiance(temporalcommunities) Icoeff = np.zeros(len(staticcommunities)) # calc integration for each node for i, statcom in enumerate(len(staticcommunities)): Icoeff[i] = np.mean(alleg[i, staticcommunities != statcom]) return Icoeff
def integration(temporalcommunities, staticcommunities)
Calculates the integration coefficient for each node. Measures the average probability that a node is in the same community as nodes from other systems. Parameters: ------------ temporalcommunities : array temporal communities vector (node,time) staticcommunities : array Static communities vector for each node Returns: ------- Icoeff : array integration coefficient for each node References: ---------- Danielle S. Bassett, Muzhi Yang, Nicholas F. Wymbs, Scott T. Grafton. Learning-Induced Autonomy of Sensorimotor Systems. Nat Neurosci. 2015 May;18(5):744-51. Marcelo Mattar, Michael W. Cole, Sharon Thompson-Schill, Danielle S. Bassett. A Functional Cartography of Cognitive Systems. PLoS Comput Biol. 2015 Dec 2;11(12):e1004533.
4.464949
3.614507
1.235286
def integration(temporalcommunities, staticcommunities): """ Calculates the integration coefficient for each node. Measures the average probability that a node is in the same community as nodes from other systems. Parameters: ------------ temporalcommunities : array temporal communities vector (node,time) staticcommunities : array Static communities vector for each node Returns: ------- Icoeff : array integration coefficient for each node References: ---------- Danielle S. Bassett, Muzhi Yang, Nicholas F. Wymbs, Scott T. Grafton. Learning-Induced Autonomy of Sensorimotor Systems. Nat Neurosci. 2015 May;18(5):744-51. Marcelo Mattar, Michael W. Cole, Sharon Thompson-Schill, Danielle S. Bassett. A Functional Cartography of Cognitive Systems. PLoS Comput Biol. 2015 Dec 2;11(12):e1004533. """ # make sure the static and temporal communities have the same number of nodes if staticcommunities.shape[0] != temporalcommunities.shape[0]: raise ValueError( 'Temporal and static communities have different dimensions') alleg = allegiance(temporalcommunities) Icoeff = np.zeros(len(staticcommunities)) # calc integration for each node for i, statcom in enumerate(len(staticcommunities)): Icoeff[i] = np.mean(alleg[i, staticcommunities != statcom]) return Icoeff
0.86916
0.630372
lowest, highest = self.tracks[0].get_active_pitch_range() if len(self.tracks) > 1: for track in self.tracks[1:]: low, high = track.get_active_pitch_range() if low < lowest: lowest = low if high > highest: highest = high return lowest, highest
def get_active_pitch_range(self)
Return the active pitch range of the pianorolls of all tracks as a tuple (lowest, highest). Returns ------- lowest : int The lowest active pitch among the pianorolls of all tracks. highest : int The lowest highest pitch among the pianorolls of all tracks.
1.955238
1.833228
1.066555
def get_active_pitch_range(self): """ Return the active pitch range of the pianorolls of all tracks as a tuple (lowest, highest). Returns ------- lowest : int The lowest active pitch among the pianorolls of all tracks. highest : int The lowest highest pitch among the pianorolls of all tracks. """ lowest, highest = self.tracks[0].get_active_pitch_range() if len(self.tracks) > 1: for track in self.tracks[1:]: low, high = track.get_active_pitch_range() if low < lowest: lowest = low if high > highest: highest = high return lowest, highest
0.741364
0.631438
empty_track_indices = [idx for idx, track in enumerate(self.tracks) if not np.any(track.pianoroll)] return empty_track_indices
def get_empty_tracks(self)
Return the indices of tracks with empty pianorolls. Returns ------- empty_track_indices : list The indices of tracks with empty pianorolls.
4.312263
3.439944
1.253585
def get_empty_tracks(self): """ Return the indices of tracks with empty pianorolls. Returns ------- empty_track_indices : list The indices of tracks with empty pianorolls. """ empty_track_indices = [idx for idx, track in enumerate(self.tracks) if not np.any(track.pianoroll)] return empty_track_indices
0.691406
0.596198
if not isinstance(obj, Multitrack): raise TypeError("Support only `pypianoroll.Multitrack` class objects") copied = deepcopy(obj) copied.pad_to_same() return copied
def pad_to_same(obj)
Return a copy of the object with shorter piano-rolls padded with zeros at the end along the time axis to the length of the piano-roll with the maximal length.
7.100032
5.867205
1.210122
def pad_to_same(obj): """ Return a copy of the object with shorter piano-rolls padded with zeros at the end along the time axis to the length of the piano-roll with the maximal length. """ if not isinstance(obj, Multitrack): raise TypeError("Support only `pypianoroll.Multitrack` class objects") copied = deepcopy(obj) copied.pad_to_same() return copied
0.786028
0.732053
_validate_pianoroll(pianoroll) reshaped = pianoroll[:, :120].reshape(-1, 12, 10) reshaped[..., :8] += pianoroll[:, 120:].reshape(-1, 1, 8) return np.sum(reshaped, 1)
def _to_chroma(pianoroll)
Return the unnormalized chroma features of a pianoroll.
2.94459
2.857388
1.030518
def _to_chroma(pianoroll): """ Return the unnormalized chroma features of a pianoroll. """ _validate_pianoroll(pianoroll) reshaped = pianoroll[:, :120].reshape(-1, 12, 10) reshaped[..., :8] += pianoroll[:, 120:].reshape(-1, 1, 8) return np.sum(reshaped, 1)
0.744208
0.62088
_validate_pianoroll(pianoroll) reshaped = pianoroll.reshape(-1, beat_resolution * pianoroll.shape[1]) n_empty_beats = np.count_nonzero(reshaped.any(1)) return n_empty_beats / len(reshaped)
def empty_beat_rate(pianoroll, beat_resolution)
Return the ratio of empty beats to the total number of beats in a pianoroll.
2.961781
2.79248
1.060628
def empty_beat_rate(pianoroll, beat_resolution): """ Return the ratio of empty beats to the total number of beats in a pianoroll. """ _validate_pianoroll(pianoroll) reshaped = pianoroll.reshape(-1, beat_resolution * pianoroll.shape[1]) n_empty_beats = np.count_nonzero(reshaped.any(1)) return n_empty_beats / len(reshaped)
0.725077
0.781247
_validate_pianoroll(pianoroll) chroma = _to_chroma(pianoroll) return np.count_nonzero(np.any(chroma, 0))
def n_pitche_classes_used(pianoroll)
Return the number of unique pitch classes used in a pianoroll.
3.500182
3.410502
1.026295
def n_pitche_classes_used(pianoroll): """ Return the number of unique pitch classes used in a pianoroll. """ _validate_pianoroll(pianoroll) chroma = _to_chroma(pianoroll) return np.count_nonzero(np.any(chroma, 0))
0.688704
0.565299
_validate_pianoroll(pianoroll) if np.issubdtype(pianoroll.dtype, np.bool_): pianoroll = pianoroll.astype(np.uint8) padded = np.pad(pianoroll, ((1, 1), (0, 0)), 'constant') diff = np.diff(padded, axis=0).reshape(-1) onsets = (diff > 0).nonzero()[0] offsets = (diff < 0).nonzero()[0] n_qualified_notes = np.count_nonzero(offsets - onsets >= threshold) return n_qualified_notes / len(onsets)
def qualified_note_rate(pianoroll, threshold=2)
Return the ratio of the number of the qualified notes (notes longer than `threshold` (in time step)) to the total number of notes in a pianoroll.
2.257025
2.245966
1.004924
def qualified_note_rate(pianoroll, threshold=2): """ Return the ratio of the number of the qualified notes (notes longer than `threshold` (in time step)) to the total number of notes in a pianoroll. """ _validate_pianoroll(pianoroll) if np.issubdtype(pianoroll.dtype, np.bool_): pianoroll = pianoroll.astype(np.uint8) padded = np.pad(pianoroll, ((1, 1), (0, 0)), 'constant') diff = np.diff(padded, axis=0).reshape(-1) onsets = (diff > 0).nonzero()[0] offsets = (diff < 0).nonzero()[0] n_qualified_notes = np.count_nonzero(offsets - onsets >= threshold) return n_qualified_notes / len(onsets)
0.791932
0.76487
if beat_resolution not in (4, 6, 8, 9, 12, 16, 18, 24): raise ValueError("Unsupported beat resolution. Only 4, 6, 8 ,9, 12, " "16, 18, 42 are supported.") _validate_pianoroll(pianoroll) def _drum_pattern_mask(res, tol): if res == 24: drum_pattern_mask = np.tile([1., tol, 0., 0., 0., tol], 4) elif res == 12: drum_pattern_mask = np.tile([1., tol, tol], 4) elif res == 6: drum_pattern_mask = np.tile([1., tol, tol], 2) elif res == 18: drum_pattern_mask = np.tile([1., tol, 0., 0., 0., tol], 3) elif res == 9: drum_pattern_mask = np.tile([1., tol, tol], 3) elif res == 16: drum_pattern_mask = np.tile([1., tol, 0., tol], 4) elif res == 8: drum_pattern_mask = np.tile([1., tol], 4) elif res == 4: drum_pattern_mask = np.tile([1., tol], 2) return drum_pattern_mask drum_pattern_mask = _drum_pattern_mask(beat_resolution, tolerance) n_in_pattern = np.sum(drum_pattern_mask * np.count_nonzero(pianoroll, 1)) return n_in_pattern / np.count_nonzero(pianoroll)
def drum_in_pattern_rate(pianoroll, beat_resolution, tolerance=0.1)
Return the ratio of the number of drum notes that lie on the drum pattern (i.e., at certain time steps) to the total number of drum notes.
1.908838
1.893038
1.008347
def drum_in_pattern_rate(pianoroll, beat_resolution, tolerance=0.1): """ Return the ratio of the number of drum notes that lie on the drum pattern (i.e., at certain time steps) to the total number of drum notes. """ if beat_resolution not in (4, 6, 8, 9, 12, 16, 18, 24): raise ValueError("Unsupported beat resolution. Only 4, 6, 8 ,9, 12, " "16, 18, 42 are supported.") _validate_pianoroll(pianoroll) def _drum_pattern_mask(res, tol): if res == 24: drum_pattern_mask = np.tile([1., tol, 0., 0., 0., tol], 4) elif res == 12: drum_pattern_mask = np.tile([1., tol, tol], 4) elif res == 6: drum_pattern_mask = np.tile([1., tol, tol], 2) elif res == 18: drum_pattern_mask = np.tile([1., tol, 0., 0., 0., tol], 3) elif res == 9: drum_pattern_mask = np.tile([1., tol, tol], 3) elif res == 16: drum_pattern_mask = np.tile([1., tol, 0., tol], 4) elif res == 8: drum_pattern_mask = np.tile([1., tol], 4) elif res == 4: drum_pattern_mask = np.tile([1., tol], 2) return drum_pattern_mask drum_pattern_mask = _drum_pattern_mask(beat_resolution, tolerance) n_in_pattern = np.sum(drum_pattern_mask * np.count_nonzero(pianoroll, 1)) return n_in_pattern / np.count_nonzero(pianoroll)
0.57517
0.609553
if not isinstance(key, int): raise TypeError("`key` must an integer.") if key > 11 or key < 0: raise ValueError("`key` must be in an integer in between 0 and 11.") if kind not in ('major', 'minor'): raise ValueError("`kind` must be one of 'major' or 'minor'.") _validate_pianoroll(pianoroll) def _scale_mask(key, kind): if kind == 'major': a_scale_mask = np.array([0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1], bool) else: a_scale_mask = np.array([1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1], bool) return np.roll(a_scale_mask, key) chroma = _to_chroma(pianoroll) scale_mask = _scale_mask(key, kind) n_in_scale = np.sum(scale_mask.reshape(-1, 12) * chroma) return n_in_scale / np.count_nonzero(pianoroll)
def in_scale_rate(pianoroll, key=3, kind='major')
Return the ratio of the number of nonzero entries that lie in a specific scale to the total number of nonzero entries in a pianoroll. Default to C major scale.
2.141032
2.103438
1.017873
def in_scale_rate(pianoroll, key=3, kind='major'): """ Return the ratio of the number of nonzero entries that lie in a specific scale to the total number of nonzero entries in a pianoroll. Default to C major scale. """ if not isinstance(key, int): raise TypeError("`key` must an integer.") if key > 11 or key < 0: raise ValueError("`key` must be in an integer in between 0 and 11.") if kind not in ('major', 'minor'): raise ValueError("`kind` must be one of 'major' or 'minor'.") _validate_pianoroll(pianoroll) def _scale_mask(key, kind): if kind == 'major': a_scale_mask = np.array([0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1], bool) else: a_scale_mask = np.array([1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1], bool) return np.roll(a_scale_mask, key) chroma = _to_chroma(pianoroll) scale_mask = _scale_mask(key, kind) n_in_scale = np.sum(scale_mask.reshape(-1, 12) * chroma) return n_in_scale / np.count_nonzero(pianoroll)
0.674345
0.549761
nonzero_steps = np.any(self.pianoroll, axis=1) inv_last_nonzero_step = np.argmax(np.flip(nonzero_steps, axis=0)) active_length = self.pianoroll.shape[0] - inv_last_nonzero_step return active_length
def get_active_length(self)
Return the active length (i.e., without trailing silence) of the pianoroll. The unit is time step. Returns ------- active_length : int The active length (i.e., without trailing silence) of the pianoroll.
3.980884
3.492857
1.139721
def get_active_length(self): """ Return the active length (i.e., without trailing silence) of the pianoroll. The unit is time step. Returns ------- active_length : int The active length (i.e., without trailing silence) of the pianoroll. """ nonzero_steps = np.any(self.pianoroll, axis=1) inv_last_nonzero_step = np.argmax(np.flip(nonzero_steps, axis=0)) active_length = self.pianoroll.shape[0] - inv_last_nonzero_step return active_length
0.748076
0.526769
if self.pianoroll.shape[1] < 1: raise ValueError("Cannot compute the active pitch range for an " "empty pianoroll") lowest = 0 highest = 127 while lowest < highest: if np.any(self.pianoroll[:, lowest]): break lowest += 1 if lowest == highest: raise ValueError("Cannot compute the active pitch range for an " "empty pianoroll") while not np.any(self.pianoroll[:, highest]): highest -= 1 return lowest, highest
def get_active_pitch_range(self)
Return the active pitch range as a tuple (lowest, highest). Returns ------- lowest : int The lowest active pitch in the pianoroll. highest : int The highest active pitch in the pianoroll.
2.558522
2.321702
1.102003
def get_active_pitch_range(self): """ Return the active pitch range as a tuple (lowest, highest). Returns ------- lowest : int The lowest active pitch in the pianoroll. highest : int The highest active pitch in the pianoroll. """ if self.pianoroll.shape[1] < 1: raise ValueError("Cannot compute the active pitch range for an " "empty pianoroll") lowest = 0 highest = 127 while lowest < highest: if np.any(self.pianoroll[:, lowest]): break lowest += 1 if lowest == highest: raise ValueError("Cannot compute the active pitch range for an " "empty pianoroll") while not np.any(self.pianoroll[:, highest]): highest -= 1 return lowest, highest
0.766242
0.609611
if x.shape[0] != 1: raise ValueError("Only one sample can be plotted at a time.") # compile theano function xs = T.tensor4('xs').astype(theano.config.floatX) get_activity = theano.function([xs], get_output(layer, xs)) activity = get_activity(x) shape = activity.shape nrows = np.ceil(np.sqrt(shape[1])).astype(int) ncols = nrows figs, axes = plt.subplots(nrows + 1, ncols, figsize=figsize, squeeze=False) axes[0, ncols // 2].imshow(1 - x[0][0], cmap='gray', interpolation='none') axes[0, ncols // 2].set_title('original') for ax in axes.flatten(): ax.set_xticks([]) ax.set_yticks([]) ax.axis('off') for i, (r, c) in enumerate(product(range(nrows), range(ncols))): if i >= shape[1]: break ndim = activity[0][i].ndim if ndim != 2: raise ValueError("Wrong number of dimensions, image data should " "have 2, instead got {}".format(ndim)) axes[r + 1, c].imshow(-activity[0][i], cmap='gray', interpolation='none') return plt
def plot_conv_activity(layer, x, figsize=(6, 8))
Plot the acitivities of a specific layer. Only really makes sense with layers that work 2D data (2D convolutional layers, 2D pooling layers ...). Parameters ---------- layer : lasagne.layers.Layer x : numpy.ndarray Only takes one sample at a time, i.e. x.shape[0] == 1.
2.865567
2.825922
1.014029
def plot_conv_activity(layer, x, figsize=(6, 8)): """ Plot the acitivities of a specific layer. Only really makes sense with layers that work 2D data (2D convolutional layers, 2D pooling layers ...). Parameters ---------- layer : lasagne.layers.Layer x : numpy.ndarray Only takes one sample at a time, i.e. x.shape[0] == 1. """ if x.shape[0] != 1: raise ValueError("Only one sample can be plotted at a time.") # compile theano function xs = T.tensor4('xs').astype(theano.config.floatX) get_activity = theano.function([xs], get_output(layer, xs)) activity = get_activity(x) shape = activity.shape nrows = np.ceil(np.sqrt(shape[1])).astype(int) ncols = nrows figs, axes = plt.subplots(nrows + 1, ncols, figsize=figsize, squeeze=False) axes[0, ncols // 2].imshow(1 - x[0][0], cmap='gray', interpolation='none') axes[0, ncols // 2].set_title('original') for ax in axes.flatten(): ax.set_xticks([]) ax.set_yticks([]) ax.axis('off') for i, (r, c) in enumerate(product(range(nrows), range(ncols))): if i >= shape[1]: break ndim = activity[0][i].ndim if ndim != 2: raise ValueError("Wrong number of dimensions, image data should " "have 2, instead got {}".format(ndim)) axes[r + 1, c].imshow(-activity[0][i], cmap='gray', interpolation='none') return plt
0.831742
0.851583
import pydotplus as pydot pydot_graph = pydot.Dot('Network', graph_type='digraph') pydot_nodes = {} pydot_edges = [] for i, layer in enumerate(layers): layer_name = getattr(layer, 'name', None) if layer_name is None: layer_name = layer.__class__.__name__ layer_type = '{0}'.format(layer_name) key = repr(layer) label = layer_type color = get_hex_color(layer_type) if verbose: for attr in ['num_filters', 'num_units', 'ds', 'filter_shape', 'stride', 'strides', 'p']: if hasattr(layer, attr): label += '\n{0}: {1}'.format(attr, getattr(layer, attr)) if hasattr(layer, 'nonlinearity'): try: nonlinearity = layer.nonlinearity.__name__ except AttributeError: nonlinearity = layer.nonlinearity.__class__.__name__ label += '\nnonlinearity: {0}'.format(nonlinearity) if output_shape: label += '\nOutput shape: {0}'.format(layer.output_shape) pydot_nodes[key] = pydot.Node( key, label=label, shape='record', fillcolor=color, style='filled') if hasattr(layer, 'input_layers'): for input_layer in layer.input_layers: pydot_edges.append([repr(input_layer), key]) if hasattr(layer, 'input_layer'): pydot_edges.append([repr(layer.input_layer), key]) for node in pydot_nodes.values(): pydot_graph.add_node(node) for edges in pydot_edges: pydot_graph.add_edge( pydot.Edge(pydot_nodes[edges[0]], pydot_nodes[edges[1]])) return pydot_graph
def make_pydot_graph(layers, output_shape=True, verbose=False)
:parameters: - layers : list List of the layers, as obtained from lasagne.layers.get_all_layers - output_shape: (default `True`) If `True`, the output shape of each layer will be displayed. - verbose: (default `False`) If `True`, layer attributes like filter shape, stride, etc. will be displayed. :returns: - pydot_graph : PyDot object containing the graph
1.925423
1.858983
1.03574
def make_pydot_graph(layers, output_shape=True, verbose=False): """ :parameters: - layers : list List of the layers, as obtained from lasagne.layers.get_all_layers - output_shape: (default `True`) If `True`, the output shape of each layer will be displayed. - verbose: (default `False`) If `True`, layer attributes like filter shape, stride, etc. will be displayed. :returns: - pydot_graph : PyDot object containing the graph """ import pydotplus as pydot pydot_graph = pydot.Dot('Network', graph_type='digraph') pydot_nodes = {} pydot_edges = [] for i, layer in enumerate(layers): layer_name = getattr(layer, 'name', None) if layer_name is None: layer_name = layer.__class__.__name__ layer_type = '{0}'.format(layer_name) key = repr(layer) label = layer_type color = get_hex_color(layer_type) if verbose: for attr in ['num_filters', 'num_units', 'ds', 'filter_shape', 'stride', 'strides', 'p']: if hasattr(layer, attr): label += '\n{0}: {1}'.format(attr, getattr(layer, attr)) if hasattr(layer, 'nonlinearity'): try: nonlinearity = layer.nonlinearity.__name__ except AttributeError: nonlinearity = layer.nonlinearity.__class__.__name__ label += '\nnonlinearity: {0}'.format(nonlinearity) if output_shape: label += '\nOutput shape: {0}'.format(layer.output_shape) pydot_nodes[key] = pydot.Node( key, label=label, shape='record', fillcolor=color, style='filled') if hasattr(layer, 'input_layers'): for input_layer in layer.input_layers: pydot_edges.append([repr(input_layer), key]) if hasattr(layer, 'input_layer'): pydot_edges.append([repr(layer.input_layer), key]) for node in pydot_nodes.values(): pydot_graph.add_node(node) for edges in pydot_edges: pydot_graph.add_edge( pydot.Edge(pydot_nodes[edges[0]], pydot_nodes[edges[1]])) return pydot_graph
0.703639
0.542015
from IPython.display import Image layers = (layers.get_all_layers() if hasattr(layers, 'get_all_layers') else layers) dot = make_pydot_graph(layers, **kwargs) return Image(dot.create_png())
def draw_to_notebook(layers, **kwargs)
Draws a network diagram in an IPython notebook :parameters: - layers : list or NeuralNet instance List of layers or the neural net to draw. - **kwargs : see the docstring of make_pydot_graph for other options
3.869769
3.186751
1.21433
def draw_to_notebook(layers, **kwargs): """ Draws a network diagram in an IPython notebook :parameters: - layers : list or NeuralNet instance List of layers or the neural net to draw. - **kwargs : see the docstring of make_pydot_graph for other options """ from IPython.display import Image layers = (layers.get_all_layers() if hasattr(layers, 'get_all_layers') else layers) dot = make_pydot_graph(layers, **kwargs) return Image(dot.create_png())
0.77102
0.540621
from decaf.util import transform # soft dep _JEFFNET_FLIP = True # first, extract the 256x256 center. image = transform.scale_and_extract(transform.as_rgb(image), 256) # convert to [0,255] float32 image = image.astype(np.float32) * 255. if _JEFFNET_FLIP: # Flip the image if necessary, maintaining the c_contiguous order image = image[::-1, :].copy() # subtract the mean image -= self.net_._data_mean return image
def prepare_image(self, image)
Returns image of shape `(256, 256, 3)`, as expected by `transform` when `classify_direct = True`.
8.974966
8.861794
1.012771
def prepare_image(self, image): """ Returns image of shape `(256, 256, 3)`, as expected by `transform` when `classify_direct = True`. """ from decaf.util import transform # soft dep _JEFFNET_FLIP = True # first, extract the 256x256 center. image = transform.scale_and_extract(transform.as_rgb(image), 256) # convert to [0,255] float32 image = image.astype(np.float32) * 255. if _JEFFNET_FLIP: # Flip the image if necessary, maintaining the c_contiguous order image = image[::-1, :].copy() # subtract the mean image -= self.net_._data_mean return image
0.828037
0.671918
mapping = kwargs if args: if len(args) != 1 or not isinstance(args[0], dict): raise RedisError('MSET requires **kwargs or a single dict arg') mapping.update(args[0]) if len(mapping) == 0: raise ResponseError("wrong number of arguments for 'mset' command") for key, value in mapping.items(): self.set(key, value) return True
def mset(self, *args, **kwargs)
Sets key/values based on a mapping. Mapping can be supplied as a single dictionary argument or as kwargs.
3.485207
3.135663
1.111474
def mset(self, *args, **kwargs): """ Sets key/values based on a mapping. Mapping can be supplied as a single dictionary argument or as kwargs. """ mapping = kwargs if args: if len(args) != 1 or not isinstance(args[0], dict): raise RedisError('MSET requires **kwargs or a single dict arg') mapping.update(args[0]) if len(mapping) == 0: raise ResponseError("wrong number of arguments for 'mset' command") for key, value in mapping.items(): self.set(key, value) return True
0.680242
0.526586
redis_hash = self._get_hash(hashkey, 'HEXISTS') return self._encode(attribute) in redis_hash
def hexists(self, hashkey, attribute)
Emulate hexists.
8.409638
7.622225
1.103305
def hexists(self, hashkey, attribute): """ Emulate hexists. """ redis_hash = self._get_hash(hashkey, 'HEXISTS') return self._encode(attribute) in redis_hash
0.626524
0.569613
disco = self.dependencies[aioxmpp.disco.DiscoClient] response = yield from disco.query_info( peer_jid, ) return namespaces.xep0050_commands in response.features
def supports_commands(self, peer_jid)
Detect whether a peer supports :xep:`50` Ad-Hoc commands. :param peer_jid: JID of the peer to query :type peer_jid: :class:`aioxmpp.JID` :rtype: :class:`bool` :return: True if the peer supports the Ad-Hoc commands protocol, false otherwise. Note that the fact that a peer supports the protocol does not imply that it offers any commands.
12.254194
9.169634
1.336389
def supports_commands(self, peer_jid): """ Detect whether a peer supports :xep:`50` Ad-Hoc commands. :param peer_jid: JID of the peer to query :type peer_jid: :class:`aioxmpp.JID` :rtype: :class:`bool` :return: True if the peer supports the Ad-Hoc commands protocol, false otherwise. Note that the fact that a peer supports the protocol does not imply that it offers any commands. """ disco = self.dependencies[aioxmpp.disco.DiscoClient] response = yield from disco.query_info( peer_jid, ) return namespaces.xep0050_commands in response.features
0.847968
0.582313
if self._response is not None: raise RuntimeError("command execution already started") request = aioxmpp.IQ( type_=aioxmpp.IQType.SET, to=self._peer_jid, payload=adhoc_xso.Command(self._command_name), ) self._response = yield from self._stream.send_iq_and_wait_for_reply( request, ) return self._response.first_payload
def start(self)
Initiate the session by starting to execute the command with the peer. :return: The :attr:`~.xso.Command.first_payload` of the response This sends an empty command IQ request with the :attr:`~.ActionType.EXECUTE` action. The :attr:`status`, :attr:`response` and related attributes get updated with the newly received values.
6.721424
4.330876
1.551978
def start(self): """ Initiate the session by starting to execute the command with the peer. :return: The :attr:`~.xso.Command.first_payload` of the response This sends an empty command IQ request with the :attr:`~.ActionType.EXECUTE` action. The :attr:`status`, :attr:`response` and related attributes get updated with the newly received values. """ if self._response is not None: raise RuntimeError("command execution already started") request = aioxmpp.IQ( type_=aioxmpp.IQType.SET, to=self._peer_jid, payload=adhoc_xso.Command(self._command_name), ) self._response = yield from self._stream.send_iq_and_wait_for_reply( request, ) return self._response.first_payload
0.74459
0.581957
if self._this_occupant is not None: items = [self._this_occupant] else: items = [] items += list(self._occupant_info.values()) return items
def members(self)
A copy of the list of occupants. The local user is always the first item in the list, unless the :meth:`on_enter` has not fired yet.
6.388441
3.987495
1.602119
def members(self): """ A copy of the list of occupants. The local user is always the first item in the list, unless the :meth:`on_enter` has not fired yet. """ if self._this_occupant is not None: items = [self._this_occupant] else: items = [] items += list(self._occupant_info.values()) return items
0.633297
0.560974
keys = list(self.keys()) try: keys.remove(None) except ValueError: pass keys.sort() key = lookup_language(keys, language_ranges) return self[key]
def lookup(self, language_ranges)
Perform an RFC4647 language range lookup on the keys in the dictionary. `language_ranges` must be a sequence of :class:`LanguageRange` instances. Return the entry in the dictionary with a key as produced by `lookup_language`. If `lookup_language` does not find a match and the mapping contains an entry with key :data:`None`, that entry is returned, otherwise :class:`KeyError` is raised.
3.510848
3.125103
1.123434
def lookup(self, language_ranges): """ Perform an RFC4647 language range lookup on the keys in the dictionary. `language_ranges` must be a sequence of :class:`LanguageRange` instances. Return the entry in the dictionary with a key as produced by `lookup_language`. If `lookup_language` does not find a match and the mapping contains an entry with key :data:`None`, that entry is returned, otherwise :class:`KeyError` is raised. """ keys = list(self.keys()) try: keys.remove(None) except ValueError: pass keys.sort() key = lookup_language(keys, language_ranges) return self[key]
0.861858
0.734715
record = b".".join([ b"_" + service.encode("ascii"), b"_" + transport.encode("ascii"), domain]) answer = yield from repeated_query( record, dns.rdatatype.SRV, **kwargs) if answer is None: return None items = [ (rec.priority, rec.weight, (str(rec.target), rec.port)) for rec in answer ] for i, (prio, weight, (host, port)) in enumerate(items): if host == ".": raise ValueError( "protocol {!r} over {!r} not supported at {!r}".format( service, transport, domain ) ) items[i] = (prio, weight, ( host.rstrip(".").encode("ascii"), port)) return items
def lookup_srv( domain: bytes, service: str, transport: str = "tcp", **kwargs)
Query the DNS for SRV records describing how the given `service` over the given `transport` is implemented for the given `domain`. `domain` must be an IDNA-encoded :class:`bytes` object; `service` must be a normal :class:`str`. Keyword arguments are passed to :func:`repeated_query`. Return a list of tuples ``(prio, weight, (hostname, port))``, where `hostname` is a IDNA-encoded :class:`bytes` object containing the hostname obtained from the SRV record. The other fields are also as obtained from the SRV records. The trailing dot is stripped from the `hostname`. If the DNS query returns an empty result, :data:`None` is returned. If any of the found SRV records has the root zone (``.``) as `hostname`, this indicates that the service is not available at the given `domain` and :class:`ValueError` is raised.
3.632017
2.949542
1.231384
def lookup_srv( domain: bytes, service: str, transport: str = "tcp", **kwargs): """ Query the DNS for SRV records describing how the given `service` over the given `transport` is implemented for the given `domain`. `domain` must be an IDNA-encoded :class:`bytes` object; `service` must be a normal :class:`str`. Keyword arguments are passed to :func:`repeated_query`. Return a list of tuples ``(prio, weight, (hostname, port))``, where `hostname` is a IDNA-encoded :class:`bytes` object containing the hostname obtained from the SRV record. The other fields are also as obtained from the SRV records. The trailing dot is stripped from the `hostname`. If the DNS query returns an empty result, :data:`None` is returned. If any of the found SRV records has the root zone (``.``) as `hostname`, this indicates that the service is not available at the given `domain` and :class:`ValueError` is raised. """ record = b".".join([ b"_" + service.encode("ascii"), b"_" + transport.encode("ascii"), domain]) answer = yield from repeated_query( record, dns.rdatatype.SRV, **kwargs) if answer is None: return None items = [ (rec.priority, rec.weight, (str(rec.target), rec.port)) for rec in answer ] for i, (prio, weight, (host, port)) in enumerate(items): if host == ".": raise ValueError( "protocol {!r} over {!r} not supported at {!r}".format( service, transport, domain ) ) items[i] = (prio, weight, ( host.rstrip(".").encode("ascii"), port)) return items
0.88796
0.698278
record = b".".join([ b"_" + str(port).encode("ascii"), b"_" + transport.encode("ascii"), hostname ]) answer = yield from repeated_query( record, dns.rdatatype.TLSA, require_ad=require_ad, **kwargs) if answer is None: return None items = [ (rec.usage, rec.selector, rec.mtype, rec.cert) for rec in answer ] return items
def lookup_tlsa(hostname, port, transport="tcp", require_ad=True, **kwargs)
Query the DNS for TLSA records describing the certificates and/or keys to expect when contacting `hostname` at the given `port` over the given `transport`. `hostname` must be an IDNA-encoded :class:`bytes` object. The keyword arguments are passed to :func:`repeated_query`; `require_ad` defaults to :data:`True` here. Return a list of tuples ``(usage, selector, mtype, cert)`` which contains the information from the TLSA records. If no data is returned by the query, :data:`None` is returned instead.
4.397869
3.582686
1.227534
def lookup_tlsa(hostname, port, transport="tcp", require_ad=True, **kwargs): """ Query the DNS for TLSA records describing the certificates and/or keys to expect when contacting `hostname` at the given `port` over the given `transport`. `hostname` must be an IDNA-encoded :class:`bytes` object. The keyword arguments are passed to :func:`repeated_query`; `require_ad` defaults to :data:`True` here. Return a list of tuples ``(usage, selector, mtype, cert)`` which contains the information from the TLSA records. If no data is returned by the query, :data:`None` is returned instead. """ record = b".".join([ b"_" + str(port).encode("ascii"), b"_" + transport.encode("ascii"), hostname ]) answer = yield from repeated_query( record, dns.rdatatype.TLSA, require_ad=require_ad, **kwargs) if answer is None: return None items = [ (rec.usage, rec.selector, rec.mtype, rec.cert) for rec in answer ] return items
0.863017
0.678487
parts = [ _process_identity(identity) for identity in identities ] parts.sort() return b"".join(parts)+b"\x1c"
def _process_identities(identities)
Generate the `Identities String` from an iterable of identities. :param identities: The identities to generate the features string from. :type identities: :class:`~collections.abc.Iterable` of :class:`~.disco.xso.Identity` :return: The `Identities String` :rtype: :class:`bytes` Generate the `Identities String` from the given `identities` as specified in :xep:`390`.
6.086969
5.620315
1.08303
def _process_identities(identities): """ Generate the `Identities String` from an iterable of identities. :param identities: The identities to generate the features string from. :type identities: :class:`~collections.abc.Iterable` of :class:`~.disco.xso.Identity` :return: The `Identities String` :rtype: :class:`bytes` Generate the `Identities String` from the given `identities` as specified in :xep:`390`. """ parts = [ _process_identity(identity) for identity in identities ] parts.sort() return b"".join(parts)+b"\x1c"
0.850002
0.538073
parts = [ _process_form(form) for form in exts ] parts.sort() return b"".join(parts)+b"\x1c"
def _process_extensions(exts)
Generate the `Extensions String` from an iterable of data forms. :param exts: The data forms to generate the extensions string from. :type exts: :class:`~collections.abc.Iterable` of :class:`~.forms.xso.Data` :return: The `Extensions String` :rtype: :class:`bytes` Generate the `Extensions String` from the given `exts` as specified in :xep:`390`.
7.861825
6.660774
1.180317
def _process_extensions(exts): """ Generate the `Extensions String` from an iterable of data forms. :param exts: The data forms to generate the extensions string from. :type exts: :class:`~collections.abc.Iterable` of :class:`~.forms.xso.Data` :return: The `Extensions String` :rtype: :class:`bytes` Generate the `Extensions String` from the given `exts` as specified in :xep:`390`. """ parts = [ _process_form(form) for form in exts ] parts.sort() return b"".join(parts)+b"\x1c"
0.830388
0.508117
stanza = aioxmpp.Presence() self._state.apply_to_stanza(stanza) stanza.status.update(self._status) return stanza
def make_stanza(self)
Create and return a presence stanza with the current settings. :return: Presence stanza :rtype: :class:`aioxmpp.Presence`
7.006313
5.696356
1.229964
def make_stanza(self): """ Create and return a presence stanza with the current settings. :return: Presence stanza :rtype: :class:`aioxmpp.Presence` """ stanza = aioxmpp.Presence() self._state.apply_to_stanza(stanza) stanza.status.update(self._status) return stanza
0.618752
0.541833
if not isinstance(priority, numbers.Integral): raise TypeError( "invalid priority: got {}, expected integer".format( type(priority) ) ) if not isinstance(state, aioxmpp.PresenceState): raise TypeError( "invalid state: got {}, expected aioxmpp.PresenceState".format( type(state), ) ) if isinstance(status, str): new_status = {None: status} else: new_status = dict(status) new_priority = int(priority) emit_state_event = self._state != state emit_overall_event = ( emit_state_event or self._priority != new_priority or self._status != new_status ) self._state = state self._status = new_status self._priority = new_priority if emit_state_event: self.on_presence_state_changed() if emit_overall_event: self.on_presence_changed() return self.resend_presence()
def set_presence(self, state, status={}, priority=0)
Change the presence broadcast by the client. :param state: New presence state to broadcast :type state: :class:`aioxmpp.PresenceState` :param status: New status information to broadcast :type status: :class:`dict` or :class:`str` :param priority: New priority for the resource :type priority: :class:`int` :return: Stanza token of the presence stanza or :data:`None` if the presence is unchanged or the stream is not connected. :rtype: :class:`~.stream.StanzaToken` If the client is currently connected, the new presence is broadcast immediately. `status` must be either a string or something which can be passed to the :class:`dict` constructor. If it is a string, it is wrapped into a dict using ``{None: status}``. The mapping must map :class:`~.LanguageTag` objects (or :data:`None`) to strings. The information will be used to generate internationalised presence status information. If you do not need internationalisation, simply use the string version of the argument.
2.556511
2.386725
1.071138
def set_presence(self, state, status={}, priority=0): """ Change the presence broadcast by the client. :param state: New presence state to broadcast :type state: :class:`aioxmpp.PresenceState` :param status: New status information to broadcast :type status: :class:`dict` or :class:`str` :param priority: New priority for the resource :type priority: :class:`int` :return: Stanza token of the presence stanza or :data:`None` if the presence is unchanged or the stream is not connected. :rtype: :class:`~.stream.StanzaToken` If the client is currently connected, the new presence is broadcast immediately. `status` must be either a string or something which can be passed to the :class:`dict` constructor. If it is a string, it is wrapped into a dict using ``{None: status}``. The mapping must map :class:`~.LanguageTag` objects (or :data:`None`) to strings. The information will be used to generate internationalised presence status information. If you do not need internationalisation, simply use the string version of the argument. """ if not isinstance(priority, numbers.Integral): raise TypeError( "invalid priority: got {}, expected integer".format( type(priority) ) ) if not isinstance(state, aioxmpp.PresenceState): raise TypeError( "invalid state: got {}, expected aioxmpp.PresenceState".format( type(state), ) ) if isinstance(status, str): new_status = {None: status} else: new_status = dict(status) new_priority = int(priority) emit_state_event = self._state != state emit_overall_event = ( emit_state_event or self._priority != new_priority or self._status != new_status ) self._state = state self._status = new_status self._priority = new_priority if emit_state_event: self.on_presence_state_changed() if emit_overall_event: self.on_presence_changed() return self.resend_presence()
0.859987
0.53607
pk = pyasn1_struct.getComponentByName( "tbsCertificate" ).getComponentByName( "subjectPublicKeyInfo" ) return pyasn1.codec.der.encoder.encode(pk)
def extract_pk_blob_from_pyasn1(pyasn1_struct)
Extract an ASN.1 encoded public key blob from the given :mod:`pyasn1` structure (which must represent a certificate).
3.346926
3.08438
1.085121
def extract_pk_blob_from_pyasn1(pyasn1_struct): """ Extract an ASN.1 encoded public key blob from the given :mod:`pyasn1` structure (which must represent a certificate). """ pk = pyasn1_struct.getComponentByName( "tbsCertificate" ).getComponentByName( "subjectPublicKeyInfo" ) return pyasn1.codec.der.encoder.encode(pk)
0.808786
0.504639
cert_structure = extract_python_dict_from_x509(x509) try: ssl.match_hostname(cert_structure, hostname) except ssl.CertificateError: return False return True
def check_x509_hostname(x509, hostname)
Check whether the given :class:`OpenSSL.crypto.X509` certificate `x509` matches the given `hostname`. Return :data:`True` if the name matches and :data:`False` otherwise. This uses :func:`ssl.match_hostname` and :func:`extract_python_dict_from_x509`.
4.243701
2.652637
1.599805
def check_x509_hostname(x509, hostname): """ Check whether the given :class:`OpenSSL.crypto.X509` certificate `x509` matches the given `hostname`. Return :data:`True` if the name matches and :data:`False` otherwise. This uses :func:`ssl.match_hostname` and :func:`extract_python_dict_from_x509`. """ cert_structure = extract_python_dict_from_x509(x509) try: ssl.match_hostname(cert_structure, hostname) except ssl.CertificateError: return False return True
0.803617
0.54256
key = self._x509_key(x509) try: pins = self._storage[hostname] except KeyError: return None if key in pins: return True return None
def query(self, hostname, x509)
Return true if the given :class:`OpenSSL.crypto.X509` object `x509` has previously been pinned for use with the given `hostname` and :data:`None` otherwise. Returning :data:`None` allows this method to be used with :class:`PinningPKIXCertificateVerifier`.
4.754226
3.829011
1.241633
def query(self, hostname, x509): """ Return true if the given :class:`OpenSSL.crypto.X509` object `x509` has previously been pinned for use with the given `hostname` and :data:`None` otherwise. Returning :data:`None` allows this method to be used with :class:`PinningPKIXCertificateVerifier`. """ key = self._x509_key(x509) try: pins = self._storage[hostname] except KeyError: return None if key in pins: return True return None
0.858333
0.502441

Filtered version of code search net python subset, with filtering based on perplexity with/without docstring, learning value/quality classifiers, and manual filtering.

Original data with perplexity filtering is from here, with credit to bjoernp.

Downloads last month
29