Dataset Viewer

The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider removing the loading script and relying on automated data support (you can use convert_to_parquet from the datasets library). If this is not possible, please open a discussion for direct help.

TREC Cast 2019

TREC Cast have released a document collection with topics and qrels of which a subset has been annotated such that it is suitable for multi-turn conversational search.

Dataset statistics

  • Passages: 38,426,252

  • Topics: 20

  • Queries: 173

Subsets

CAR + MSMARCO Collection

Together CAR and MSMARCO have a size of 6,13G, so downloading will take a while. You can use the collection as followed:

collection = load_dataset('trec-cast-2019-multi-turn', 'test_collection')

The collection has the following data format:

docno: str
  The document id format is [collection_id_paragraph_id] with collection id and paragraph id separated by an underscore.
  The collection ids are in the set: {MARCO, CAR}. E.g.: CAR_6869dee46ab12f0f7060874f7fc7b1c57d53144a
text: str
  The content of the passage.

Sample

Instead of using the entire data set, you can also download a sample set containing only 200,000 items:

collection = load_dataset('trec-cast-2019-multi-turn', 'test_collection_sample')

Topics

You can get the topics as followed:

topics = load_dataset('trec-cast-2019-multi-turn', 'topics')

The topics have the following dataformat:

qid: str
  Query ID of the format "topicId_questionNumber"
history: str[]
  A list of queries. It can be empty for the first question in a topic.
query: str
  The query

Qrels

You can get the qrels as followed:

qrels = load_dataset('trec-cast-2019-multi-turn', 'qrels')

The qrels have the following data format:

qid: str
  Query ID of the format "topicId_questionNumber"
qrels: List[dict]
  A list of dictionaries with the keys 'docno' and 'relevance'. Relevance is an integer in the range [0, 4]
Downloads last month
232