ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a2ea122f01cb5680dc97307e94fd9cddb4075fa
''' Created on 05.01.2014 @author: root ''' from org.askalon.jlibcloud.compute.wrapperInterfaces.base import StorageVolume as JStorageVolume from javaimpl.compute.utils import none_check class StorageVolumeImpl(JStorageVolume): ''' classdocs ''' def __init__(self, volume): ''' Constructor ''' #keep a reference to access in jython self.volume = volume self.obj = volume if hasattr(volume, 'uuid'): self.uuidp = none_check(volume.uuid, "") else: self.uuidp = "" if hasattr(volume, 'id'): self.idp = none_check(volume.id, "") else: self.idp = "" if hasattr(volume, 'name'): self.namep = none_check(volume.name, "") else: self.namep = "" if hasattr(volume, 'size'): self.sizep = none_check(volume.size, -1) else: self.sizep = -1 if hasattr(volume, 'extra'): self.extrap = volume.extra else: self.extrap = {} if hasattr(volume, '__repr__()'): self.reprp = volume.__repr__() else: self.reprp = str(volume) def getUUID(self): return self.uuidp def getId(self): return self.idp def getName(self): return self.namep def getSizeGB(self): return self.sizep def getExtra(self): return self.extrap def attach(self, node, device=None): return self.volume.attach(node.node, device) def detach(self): return self.volume.detach() def destroy(self): return self.volume.destroy() def listSnapshots(self): return self.volume.list_snapshots() def createSnapshot(self, name): return self.volume.snapshot(name) def toString(self): return self.reprp
py
1a2ea2af726cdd1dd54a38cdc9d44649d4b224ba
from __future__ import annotations import copy as _copy import enum import logging as _logging import os import pathlib import typing from dataclasses import dataclass from datetime import datetime from inspect import getfullargspec as _getargspec import six as _six from flytekit.common import constants as _constants from flytekit.common import interface as _interface from flytekit.common import sdk_bases as _sdk_bases from flytekit.common import utils as _common_utils from flytekit.common.core.identifier import WorkflowExecutionIdentifier from flytekit.common.exceptions import scopes as _exception_scopes from flytekit.common.exceptions import user as _user_exceptions from flytekit.common.tasks import output as _task_output from flytekit.common.tasks import task as _base_task from flytekit.common.types import helpers as _type_helpers from flytekit.configuration import internal as _internal_config from flytekit.configuration import resources as _resource_config from flytekit.configuration import sdk as _sdk_config from flytekit.configuration import secrets from flytekit.engines import loader as _engine_loader from flytekit.interfaces.stats import taggable from flytekit.models import literals as _literal_models from flytekit.models import task as _task_models class SecretsManager(object): """ This provides a secrets resolution logic at runtime. The resolution order is - Try env var first. The env var should have the configuration.SECRETS_ENV_PREFIX. The env var will be all upper cased - If not then try the file where the name matches lower case ``configuration.SECRETS_DEFAULT_DIR/<group>/configuration.SECRETS_FILE_PREFIX<key>`` All configuration values can always be overridden by injecting an environment variable """ def __init__(self): self._base_dir = str(secrets.SECRETS_DEFAULT_DIR.get()).strip() self._file_prefix = str(secrets.SECRETS_FILE_PREFIX.get()).strip() self._env_prefix = str(secrets.SECRETS_ENV_PREFIX.get()).strip() def get(self, group: str, key: str) -> str: """ Retrieves a secret using the resolution order -> Env followed by file. If not found raises a ValueError """ self.check_group_key(group, key) env_var = self.get_secrets_env_var(group, key) fpath = self.get_secrets_file(group, key) v = os.environ.get(env_var) if v is not None: return v if os.path.exists(fpath): with open(fpath, "r") as f: return f.read().strip() raise ValueError( f"Unable to find secret for key {key} in group {group} " f"in Env Var:{env_var} and FilePath: {fpath}" ) def get_secrets_env_var(self, group: str, key: str) -> str: """ Returns a string that matches the ENV Variable to look for the secrets """ self.check_group_key(group, key) return f"{self._env_prefix}{group.upper()}_{key.upper()}" def get_secrets_file(self, group: str, key: str) -> str: """ Returns a path that matches the file to look for the secrets """ self.check_group_key(group, key) return os.path.join(self._base_dir, group.lower(), f"{self._file_prefix}{key.lower()}") @staticmethod def check_group_key(group: str, key: str): if group is None or group == "": raise ValueError("secrets group is a mandatory field.") if key is None or key == "": raise ValueError("secrets key is a mandatory field.") # TODO: Clean up working dir name class ExecutionParameters(object): """ This is a run-time user-centric context object that is accessible to every @task method. It can be accessed using .. code-block:: python flytekit.current_context() This object provides the following * a statsd handler * a logging handler * the execution ID as an :py:class:`flytekit.models.core.identifier.WorkflowExecutionIdentifier` object * a working directory for the user to write arbitrary files to Please do not confuse this object with the :py:class:`flytekit.FlyteContext` object. """ @dataclass(init=False) class Builder(object): stats: taggable.TaggableStats execution_date: datetime logging: _logging execution_id: str attrs: typing.Dict[str, typing.Any] working_dir: typing.Union[os.PathLike, _common_utils.AutoDeletingTempDir] def __init__(self, current: typing.Optional[ExecutionParameters] = None): self.stats = current.stats if current else None self.execution_date = current.execution_date if current else None self.working_dir = current.working_directory if current else None self.execution_id = current.execution_id if current else None self.logging = current.logging if current else None self.attrs = current._attrs if current else {} def add_attr(self, key: str, v: typing.Any) -> ExecutionParameters.Builder: self.attrs[key] = v return self def build(self) -> ExecutionParameters: if not isinstance(self.working_dir, _common_utils.AutoDeletingTempDir): pathlib.Path(self.working_dir).mkdir(parents=True, exist_ok=True) return ExecutionParameters( execution_date=self.execution_date, stats=self.stats, tmp_dir=self.working_dir, execution_id=self.execution_id, logging=self.logging, **self.attrs, ) @staticmethod def new_builder(current: ExecutionParameters = None) -> Builder: return ExecutionParameters.Builder(current=current) def builder(self) -> Builder: return ExecutionParameters.Builder(current=self) def __init__(self, execution_date, tmp_dir, stats, execution_id, logging, **kwargs): """ Args: execution_date: Date when the execution is running tmp_dir: temporary directory for the execution stats: handle to emit stats execution_id: Identifier for the xecution logging: handle to logging """ self._stats = stats self._execution_date = execution_date self._working_directory = tmp_dir self._execution_id = execution_id self._logging = logging # AutoDeletingTempDir's should be used with a with block, which creates upon entry self._attrs = kwargs # It is safe to recreate the Secrets Manager self._secrets_manager = SecretsManager() @property def stats(self) -> taggable.TaggableStats: """ A handle to a special statsd object that provides usefully tagged stats. TODO: Usage examples and better comments """ return self._stats @property def logging(self) -> _logging: """ A handle to a useful logging object. TODO: Usage examples """ return self._logging @property def working_directory(self) -> _common_utils.AutoDeletingTempDir: """ A handle to a special working directory for easily producing temporary files. TODO: Usage examples TODO: This does not always return a AutoDeletingTempDir """ return self._working_directory @property def execution_date(self) -> datetime: """ This is a datetime representing the time at which a workflow was started. This is consistent across all tasks executed in a workflow or sub-workflow. .. note:: Do NOT use this execution_date to drive any production logic. It might be useful as a tag for data to help in debugging. """ return self._execution_date @property def execution_id(self) -> str: """ This is the identifier of the workflow execution within the underlying engine. It will be consistent across all task executions in a workflow or sub-workflow execution. .. note:: Do NOT use this execution_id to drive any production logic. This execution ID should only be used as a tag on output data to link back to the workflow run that created it. """ return self._execution_id @property def secrets(self) -> SecretsManager: return self._secrets_manager def __getattr__(self, attr_name: str) -> typing.Any: """ This houses certain task specific context. For example in Spark, it houses the SparkSession, etc """ attr_name = attr_name.upper() if self._attrs and attr_name in self._attrs: return self._attrs[attr_name] raise AssertionError(f"{attr_name} not available as a parameter in Flyte context - are you in right task-type?") def has_attr(self, attr_name: str) -> bool: attr_name = attr_name.upper() if self._attrs and attr_name in self._attrs: return True return False def get(self, key: str) -> typing.Any: """ Returns task specific context if present else raise an error. The returned context will match the key """ return self.__getattr__(attr_name=key) class SdkRunnableContainer(_task_models.Container, metaclass=_sdk_bases.ExtendedSdkType): """ This is not necessarily a local-only Container object. So long as configuration is present, you can use this object """ def __init__( self, command, args, resources, env, config, ): super(SdkRunnableContainer, self).__init__("", command, args, resources, env or {}, config) @property def args(self): """ :rtype: list[Text] """ return _sdk_config.SDK_PYTHON_VENV.get() + self._args @property def image(self): """ :rtype: Text """ return _internal_config.IMAGE.get() @property def env(self): """ :rtype: dict[Text,Text] """ env = super(SdkRunnableContainer, self).env.copy() env.update( { _internal_config.CONFIGURATION_PATH.env_var: _internal_config.CONFIGURATION_PATH.get(), _internal_config.IMAGE.env_var: _internal_config.IMAGE.get(), # TODO: Phase out the below. Propeller will set these and these are not SDK specific _internal_config.PROJECT.env_var: _internal_config.PROJECT.get(), _internal_config.DOMAIN.env_var: _internal_config.DOMAIN.get(), _internal_config.NAME.env_var: _internal_config.NAME.get(), _internal_config.VERSION.env_var: _internal_config.VERSION.get(), } ) return env @classmethod def get_resources( cls, storage_request=None, cpu_request=None, gpu_request=None, memory_request=None, storage_limit=None, cpu_limit=None, gpu_limit=None, memory_limit=None, ): """ :param Text storage_request: :param Text cpu_request: :param Text gpu_request: :param Text memory_request: :param Text storage_limit: :param Text cpu_limit: :param Text gpu_limit: :param Text memory_limit: """ requests = [] if storage_request: requests.append( _task_models.Resources.ResourceEntry(_task_models.Resources.ResourceName.STORAGE, storage_request) ) if cpu_request: requests.append(_task_models.Resources.ResourceEntry(_task_models.Resources.ResourceName.CPU, cpu_request)) if gpu_request: requests.append(_task_models.Resources.ResourceEntry(_task_models.Resources.ResourceName.GPU, gpu_request)) if memory_request: requests.append( _task_models.Resources.ResourceEntry(_task_models.Resources.ResourceName.MEMORY, memory_request) ) limits = [] if storage_limit: limits.append( _task_models.Resources.ResourceEntry(_task_models.Resources.ResourceName.STORAGE, storage_limit) ) if cpu_limit: limits.append(_task_models.Resources.ResourceEntry(_task_models.Resources.ResourceName.CPU, cpu_limit)) if gpu_limit: limits.append(_task_models.Resources.ResourceEntry(_task_models.Resources.ResourceName.GPU, gpu_limit)) if memory_limit: limits.append( _task_models.Resources.ResourceEntry(_task_models.Resources.ResourceName.MEMORY, memory_limit) ) return _task_models.Resources(limits=limits, requests=requests) class SdkRunnableTaskStyle(enum.Enum): V0 = 0 V1 = 1 class SdkRunnableTask(_base_task.SdkTask, metaclass=_sdk_bases.ExtendedSdkType): """ This class includes the additional logic for building a task that executes in Python code. It has even more validation checks to ensure proper behavior than it's superclasses. Since an SdkRunnableTask is assumed to run by hooking into Python code, we will provide additional shortcuts and methods on this object. """ def __init__( self, task_function, task_type, discovery_version, retries, interruptible, deprecated, storage_request, cpu_request, gpu_request, memory_request, storage_limit, cpu_limit, gpu_limit, memory_limit, discoverable, timeout, environment, custom, ): """ :param task_function: Function container user code. This will be executed via the SDK's engine. :param Text task_type: string describing the task type :param Text discovery_version: string describing the version for task discovery purposes :param int retries: Number of retries to attempt :param bool interruptible: Specify whether task is interruptible :param Text deprecated: :param Text storage_request: :param Text cpu_request: :param Text gpu_request: :param Text memory_request: :param Text storage_limit: :param Text cpu_limit: :param Text gpu_limit: :param Text memory_limit: :param bool discoverable: :param datetime.timedelta timeout: :param dict[Text, Text] environment: :param dict[Text, T] custom: """ # Circular dependency from flytekit import __version__ self._task_function = task_function super(SdkRunnableTask, self).__init__( task_type, _task_models.TaskMetadata( discoverable, _task_models.RuntimeMetadata( _task_models.RuntimeMetadata.RuntimeType.FLYTE_SDK, __version__, "python", ), timeout, _literal_models.RetryStrategy(retries), interruptible, discovery_version, deprecated, ), # TODO: If we end up using SdkRunnableTask for the new code, make sure this is set correctly. _interface.TypedInterface({}, {}), custom, container=self._get_container_definition( storage_request=storage_request, cpu_request=cpu_request, gpu_request=gpu_request, memory_request=memory_request, storage_limit=storage_limit, cpu_limit=cpu_limit, gpu_limit=gpu_limit, memory_limit=memory_limit, environment=environment, ), ) self.id._name = "{}.{}".format(self.task_module, self.task_function_name) self._has_fast_registered = False # TODO: Remove this in the future, I don't think we'll be using this. self._task_style = SdkRunnableTaskStyle.V0 _banned_inputs = {} _banned_outputs = {} @_exception_scopes.system_entry_point def add_inputs(self, inputs): """ Adds the inputs to this task. This can be called multiple times, but it will fail if an input with a given name is added more than once, a name collides with an output, or if the name doesn't exist as an arg name in the wrapped function. :param dict[Text, flytekit.models.interface.Variable] inputs: names and variables """ self._validate_inputs(inputs) self.interface.inputs.update(inputs) @classmethod def promote_from_model(cls, base_model): # TODO: If the task exists in this container, we should be able to retrieve it. raise _user_exceptions.FlyteAssertion("Cannot promote a base object to a runnable task.") @property def task_style(self): return self._task_style @property def task_function(self): return self._task_function @property def task_function_name(self): """ :rtype: Text """ return self.task_function.__name__ @property def task_module(self): """ :rtype: Text """ return self._task_function.__module__ def validate(self): super(SdkRunnableTask, self).validate() missing_args = self._missing_mapped_inputs_outputs() if len(missing_args) > 0: raise _user_exceptions.FlyteAssertion( "The task {} is invalid because not all inputs and outputs in the " "task function definition were specified in @outputs and @inputs. " "We are missing definitions for {}.".format(self, missing_args) ) @_exception_scopes.system_entry_point def unit_test(self, **input_map): """ :param dict[Text, T] input_map: Python Std input from users. We will cast these to the appropriate Flyte literals. :returns: Depends on the behavior of the specific task in the unit engine. """ return ( _engine_loader.get_engine("unit") .get_task(self) .execute( _type_helpers.pack_python_std_map_to_literal_map( input_map, { k: _type_helpers.get_sdk_type_from_literal_type(v.type) for k, v in _six.iteritems(self.interface.inputs) }, ) ) ) @_exception_scopes.system_entry_point def local_execute(self, **input_map): """ :param dict[Text, T] input_map: Python Std input from users. We will cast these to the appropriate Flyte literals. :rtype: dict[Text, T] :returns: The output produced by this task in Python standard format. """ return ( _engine_loader.get_engine("local") .get_task(self) .execute( _type_helpers.pack_python_std_map_to_literal_map( input_map, { k: _type_helpers.get_sdk_type_from_literal_type(v.type) for k, v in _six.iteritems(self.interface.inputs) }, ) ) ) def _execute_user_code(self, context, inputs): """ :param flytekit.engines.common.EngineContext context: :param dict[Text, T] inputs: This variable is a bit of a misnomer, since it's both inputs and outputs. The dictionary passed here will be passed to the user-defined function, and will have values that are a variety of types. The T's here are Python std values for inputs. If there isn't a native Python type for something (like Schema or Blob), they are the Flyte classes. For outputs they are OutputReferences. (Note that these are not the same OutputReferences as in BindingData's) :rtype: Any: the returned object from user code. :returns: This function must return a dictionary mapping 'filenames' to Flyte Interface Entities. These entities will be used by the engine to pass data from node to node, populate metadata, etc. etc.. Each engine will have different behavior. For instance, the Flyte engine will upload the entities to a remote working directory (with the names provided), which will in turn allow Flyte Propeller to push along the workflow. Where as local engine will merely feed the outputs directly into the next node. """ if self.task_style == SdkRunnableTaskStyle.V0: return _exception_scopes.user_entry_point(self.task_function)( ExecutionParameters( execution_date=context.execution_date, # TODO: it might be better to consider passing the full struct execution_id=_six.text_type(WorkflowExecutionIdentifier.promote_from_model(context.execution_id)), stats=context.stats, logging=context.logging, tmp_dir=context.working_directory, ), **inputs, ) @_exception_scopes.system_entry_point def execute(self, context, inputs): """ :param flytekit.engines.common.EngineContext context: :param flytekit.models.literals.LiteralMap inputs: :rtype: dict[Text, flytekit.models.common.FlyteIdlEntity] :returns: This function must return a dictionary mapping 'filenames' to Flyte Interface Entities. These entities will be used by the engine to pass data from node to node, populate metadata, etc. etc.. Each engine will have different behavior. For instance, the Flyte engine will upload the entities to a remote working directory (with the names provided), which will in turn allow Flyte Propeller to push along the workflow. Where as local engine will merely feed the outputs directly into the next node. """ inputs_dict = _type_helpers.unpack_literal_map_to_sdk_python_std( inputs, {k: _type_helpers.get_sdk_type_from_literal_type(v.type) for k, v in self.interface.inputs.items()} ) outputs_dict = { name: _task_output.OutputReference(_type_helpers.get_sdk_type_from_literal_type(variable.type)) for name, variable in _six.iteritems(self.interface.outputs) } # Old style - V0: If annotations are used to define outputs, do not append outputs to the inputs dict if not self.task_function.__annotations__ or "return" not in self.task_function.__annotations__: inputs_dict.update(outputs_dict) self._execute_user_code(context, inputs_dict) return { _constants.OUTPUT_FILE_NAME: _literal_models.LiteralMap( literals={k: v.sdk_value for k, v in _six.iteritems(outputs_dict)} ) } @_exception_scopes.system_entry_point def fast_register(self, project, domain, name, digest, additional_distribution, dest_dir) -> str: """ The fast register call essentially hijacks the task container commandline. Say an existing task container definition had a commandline like so: flyte_venv pyflyte-execute --task-module app.workflows.my_workflow --task-name my_task The fast register command introduces a wrapper call to fast-execute the original commandline like so: flyte_venv pyflyte-fast-execute --additional-distribution s3://my-s3-bucket/foo/bar/12345.tar.gz -- flyte_venv pyflyte-execute --task-module app.workflows.my_workflow --task-name my_task At execution time pyflyte-fast-execute will ensure the additional distribution (i.e. the fast-registered code) exists before calling the original task commandline. :param Text project: The project in which to register this task. :param Text domain: The domain in which to register this task. :param Text name: The name to give this task. :param Text digest: The version in which to register this task. :param Text additional_distribution: User-specified location for remote source code distribution. :param Text The optional location for where to install the additional distribution at runtime :rtype: Text: Registered identifier. """ original_container = self.container container = _copy.deepcopy(original_container) args = ["pyflyte-fast-execute", "--additional-distribution", additional_distribution] if dest_dir: args += ["--dest-dir", dest_dir] args += ["--"] + container.args container._args = args self._container = container try: registered_id = self.register(project, domain, name, digest) except Exception: self._container = original_container raise self._has_fast_registered = True self._container = original_container return str(registered_id) @property def has_fast_registered(self) -> bool: return self._has_fast_registered def _get_container_definition( self, storage_request=None, cpu_request=None, gpu_request=None, memory_request=None, storage_limit=None, cpu_limit=None, gpu_limit=None, memory_limit=None, environment=None, cls=None, ): """ :param Text storage_request: :param Text cpu_request: :param Text gpu_request: :param Text memory_request: :param Text storage_limit: :param Text cpu_limit: :param Text gpu_limit: :param Text memory_limit: :param dict[Text,Text] environment: :param cls Optional[type]: Type of container to instantiate. Generally should subclass SdkRunnableContainer. :rtype: flytekit.models.task.Container """ storage_limit = storage_limit or _resource_config.DEFAULT_STORAGE_LIMIT.get() storage_request = storage_request or _resource_config.DEFAULT_STORAGE_REQUEST.get() cpu_limit = cpu_limit or _resource_config.DEFAULT_CPU_LIMIT.get() cpu_request = cpu_request or _resource_config.DEFAULT_CPU_REQUEST.get() gpu_limit = gpu_limit or _resource_config.DEFAULT_GPU_LIMIT.get() gpu_request = gpu_request or _resource_config.DEFAULT_GPU_REQUEST.get() memory_limit = memory_limit or _resource_config.DEFAULT_MEMORY_LIMIT.get() memory_request = memory_request or _resource_config.DEFAULT_MEMORY_REQUEST.get() resources = SdkRunnableContainer.get_resources( storage_request, cpu_request, gpu_request, memory_request, storage_limit, cpu_limit, gpu_limit, memory_limit ) return (cls or SdkRunnableContainer)( command=[], args=[ "pyflyte-execute", "--task-module", self.task_module, "--task-name", self.task_function_name, "--inputs", "{{.input}}", "--output-prefix", "{{.outputPrefix}}", "--raw-output-data-prefix", "{{.rawOutputDataPrefix}}", ], resources=resources, env=environment, config={}, ) def _validate_inputs(self, inputs): """ This method should be overridden in sub-classes that intend to do additional checks on inputs. If validation fails, this function should raise an informative exception. :param dict[Text, flytekit.models.interface.Variable] inputs: Input variables to validate :raises: flytekit.common.exceptions.user.FlyteValidationException """ super(SdkRunnableTask, self)._validate_inputs(inputs) for k, v in _six.iteritems(inputs): if not self._is_argname_in_function_definition(k): raise _user_exceptions.FlyteValidationException( "The input named '{}' was not specified in the task function. Therefore, this input cannot be " "provided to the task.".format(k) ) if _type_helpers.get_sdk_type_from_literal_type(v.type) in type(self)._banned_inputs: raise _user_exceptions.FlyteValidationException( "The input '{}' is not an accepted input type.".format(v) ) def _validate_outputs(self, outputs): """ This method should be overridden in sub-classes that intend to do additional checks on outputs. If validation fails, this function should raise an informative exception. :param dict[Text, flytekit.models.interface.Variable] outputs: Output variables to validate :raises: flytekit.common.exceptions.user.FlyteValidationException """ super(SdkRunnableTask, self)._validate_outputs(outputs) for k, v in _six.iteritems(outputs): if not self._is_argname_in_function_definition(k): raise _user_exceptions.FlyteValidationException( "The output named '{}' was not specified in the task function. Therefore, this output cannot be " "provided to the task.".format(k) ) if _type_helpers.get_sdk_type_from_literal_type(v.type) in type(self)._banned_outputs: raise _user_exceptions.FlyteValidationException( "The output '{}' is not an accepted output type.".format(v) ) def _get_kwarg_inputs(self): # Trim off first parameter as it is reserved for workflow_parameters return set(_getargspec(self.task_function).args[1:]) def _is_argname_in_function_definition(self, key): return key in self._get_kwarg_inputs() def _missing_mapped_inputs_outputs(self): # Trim off first parameter as it is reserved for workflow_parameters args = self._get_kwarg_inputs() inputs_and_outputs = set(self.interface.outputs.keys()) | set(self.interface.inputs.keys()) return args ^ inputs_and_outputs
py
1a2ea3181e94fd94bc50e28da8a2d0ae58cf4fe6
# A sample recursive neural network for text classification # @Time: 8/13/2020 # @Author: lnblanke # @Email: fjh314.84@gmail.com # @File: cnn.py import numpy as np import tensorflow as tf from blocks import RNN, Dense from model import Model import os path = os.path.join("glove.6B.100d.txt") embedding_indices = {} with open(path) as f: for line in f: word, coef = line.split(maxsplit = 1) coef = np.fromstring(coef, "f", sep = " ") embedding_indices[word] = coef def embedding(x): word_idx = tf.keras.datasets.imdb.get_word_index() embedding_dim = 100 l, w = x.shape embed = np.zeros((l, w, embedding_dim)) vec_to_word = {vec + 3: ww for ww, vec in word_idx.items()} vec_to_word[0] = "<pad>" vec_to_word[1] = "<sos>" vec_to_word[2] = "<unk>" for i in range(l): for j in range(w): embedding_vec = embedding_indices.get(vec_to_word[x[i][j]]) if embedding_vec is not None: embed[i][j] = embedding_vec return embed word_size = 15000 (train_x, train_y), (test_x, test_y) = tf.keras.datasets.imdb.load_data(num_words = word_size) max_len = 300 train_x = tf.keras.preprocessing.sequence.pad_sequences(train_x, max_len)[:1000] train_y = train_y[:1000] test_x = tf.keras.preprocessing.sequence.pad_sequences(test_x, max_len)[:200] test_y = test_y[:200] train_x_embed = embedding(train_x) test_x_embed = embedding(test_x) rate = 1e-2 # Learning rate epoch = 100 # Learning epochs patience = 10 # Early stop patience model = Model("RNN") model.add(RNN(input_size = 100, output_size = 64, units = 128)) model.add(Dense(64, 2, activation = "softmax")) if __name__ == '__main__': model.fit(train_x_embed, train_y, loss_func = "cross entropy loss", epochs = epoch, learning_rate = rate, patience = patience) pred = model.predict(test_x_embed) print("Accuracy: %.2f" % (np.sum(pred == test_y) / len(test_y) * 100) + "%")
py
1a2ea31bf03207358eb5c02a59efac22ead89f6f
# -*- coding: utf-8 -*- # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Generated code. DO NOT EDIT! # # Snippet for CreateDocument # NOTE: This snippet has been automatically generated for illustrative purposes only. # It may require modifications to work in your environment. # To install the latest published package dependency, execute the following: # python3 -m pip install google-cloud-dialogflow # [START dialogflow_v2_generated_Documents_CreateDocument_sync] from google.cloud import dialogflow_v2 def sample_create_document(): # Create a client client = dialogflow_v2.DocumentsClient() # Initialize request argument(s) document = dialogflow_v2.Document() document.content_uri = "content_uri_value" document.display_name = "display_name_value" document.mime_type = "mime_type_value" document.knowledge_types = "AGENT_FACING_SMART_REPLY" request = dialogflow_v2.CreateDocumentRequest( parent="parent_value", document=document, ) # Make the request operation = client.create_document(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response) # [END dialogflow_v2_generated_Documents_CreateDocument_sync]
py
1a2ea33be5b1c12b6b57d8e9ec275581e3599fc4
#Download Data and Save Data import urllib print "downloading with urllib" dl_url = http://s3.amazonaws.com/open_data/* urllib.urlretrieve(dl_url) # file1 = opendata_giftcards000.gz # file2 = opendata_giving_page_projects000.gz # file3 = opendata_giving_pages000.gz # file4 = opendata_essays000.gz # file5 = opendata_resources000.gz # file6 = opendata_donations000.gz # file7 = opendata_projects000.gz # http://s3.amazonaws.com/open_data/opendata_giftcards000.gz # http://s3.amazonaws.com/open_data/opendata_giving_page_projects000.gz # http://s3.amazonaws.com/open_data/opendata_giving_pages000.gz # http://s3.amazonaws.com/open_data/opendata_essays000.gz # http://s3.amazonaws.com/open_data/opendata_resources000.gz # http://s3.amazonaws.com/open_data/opendata_donations000.gz # http://s3.amazonaws.com/open_data/opendata_projects000.gz
py
1a2ea363968078399a54b10dc83f806c9fe801d3
"""Initial migration Revision ID: e4ef83148109 Revises: Create Date: 2021-11-25 12:45:30.514576 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'e4ef83148109' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### pass # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### pass # ### end Alembic commands ###
py
1a2ea3684f76dacee9cee3bfdd0a4cf2e4102106
import os from setuptools import setup, find_packages with open(os.path.join(os.path.dirname(__file__), 'README.rst')) as readme: README = readme.read() # allow setup.py to be run from any path os.chdir(os.path.normpath(os.path.join(os.path.abspath(__file__), os.pardir))) setup( name='django_admin_monitoring', version='0.1.3', packages=find_packages(), include_package_data=True, license='MIT License', description='A simple Django app that provides ability to monitor such things as user feedback in admin', long_description=README, url='https://github.com/eternalfame/django_admin_monitoring', author='Vyacheslav Sukhenko', author_email='eternalfame@mail.ru', classifiers=[ 'Environment :: Web Environment', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', ], )
py
1a2ea48516f54a1066414fdda5b0d25b2432255c
# Authors: Peter Prettenhofer <peter.prettenhofer@gmail.com> (main author) # Mathieu Blondel (partial_fit support) # # License: BSD 3 clause """Classification and regression using Stochastic Gradient Descent (SGD).""" import numpy as np import warnings from abc import ABCMeta, abstractmethod from joblib import Parallel from ..base import clone, is_classifier from ._base import LinearClassifierMixin, SparseCoefMixin from ._base import make_dataset from ..base import BaseEstimator, RegressorMixin from ..utils import check_array, check_random_state, check_X_y from ..utils.extmath import safe_sparse_dot from ..utils.multiclass import _check_partial_fit_first_call from ..utils.validation import check_is_fitted, _check_sample_weight from ..utils.validation import _deprecate_positional_args from ..utils.fixes import delayed from ..exceptions import ConvergenceWarning from ..model_selection import StratifiedShuffleSplit, ShuffleSplit from ._sgd_fast import _plain_sgd from ..utils import compute_class_weight from ._sgd_fast import Hinge from ._sgd_fast import SquaredHinge from ._sgd_fast import Log from ._sgd_fast import ModifiedHuber from ._sgd_fast import SquaredLoss from ._sgd_fast import Huber from ._sgd_fast import EpsilonInsensitive from ._sgd_fast import SquaredEpsilonInsensitive from ..utils.fixes import _joblib_parallel_args from ..utils import deprecated LEARNING_RATE_TYPES = {"constant": 1, "optimal": 2, "invscaling": 3, "adaptive": 4, "pa1": 5, "pa2": 6} PENALTY_TYPES = {"none": 0, "l2": 2, "l1": 1, "elasticnet": 3} DEFAULT_EPSILON = 0.1 # Default value of ``epsilon`` parameter. MAX_INT = np.iinfo(np.int32).max class _ValidationScoreCallback: """Callback for early stopping based on validation score""" def __init__(self, estimator, X_val, y_val, sample_weight_val, classes=None): self.estimator = clone(estimator) self.estimator.t_ = 1 # to pass check_is_fitted if classes is not None: self.estimator.classes_ = classes self.X_val = X_val self.y_val = y_val self.sample_weight_val = sample_weight_val def __call__(self, coef, intercept): est = self.estimator est.coef_ = coef.reshape(1, -1) est.intercept_ = np.atleast_1d(intercept) return est.score(self.X_val, self.y_val, self.sample_weight_val) class BaseSGD(SparseCoefMixin, BaseEstimator, metaclass=ABCMeta): """Base class for SGD classification and regression.""" @_deprecate_positional_args def __init__(self, loss, *, penalty='l2', alpha=0.0001, C=1.0, l1_ratio=0.15, fit_intercept=True, max_iter=1000, tol=1e-3, shuffle=True, verbose=0, epsilon=0.1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, early_stopping=False, validation_fraction=0.1, n_iter_no_change=5, warm_start=False, average=False): self.loss = loss self.penalty = penalty self.learning_rate = learning_rate self.epsilon = epsilon self.alpha = alpha self.C = C self.l1_ratio = l1_ratio self.fit_intercept = fit_intercept self.shuffle = shuffle self.random_state = random_state self.verbose = verbose self.eta0 = eta0 self.power_t = power_t self.early_stopping = early_stopping self.validation_fraction = validation_fraction self.n_iter_no_change = n_iter_no_change self.warm_start = warm_start self.average = average self.max_iter = max_iter self.tol = tol # current tests expect init to do parameter validation # but we are not allowed to set attributes self._validate_params() def set_params(self, **kwargs): """Set and validate the parameters of estimator. Parameters ---------- **kwargs : dict Estimator parameters. Returns ------- self : object Estimator instance. """ super().set_params(**kwargs) self._validate_params() return self @abstractmethod def fit(self, X, y): """Fit model.""" def _validate_params(self, for_partial_fit=False): """Validate input params. """ if not isinstance(self.shuffle, bool): raise ValueError("shuffle must be either True or False") if not isinstance(self.early_stopping, bool): raise ValueError("early_stopping must be either True or False") if self.early_stopping and for_partial_fit: raise ValueError("early_stopping should be False with partial_fit") if self.max_iter is not None and self.max_iter <= 0: raise ValueError("max_iter must be > zero. Got %f" % self.max_iter) if not (0.0 <= self.l1_ratio <= 1.0): raise ValueError("l1_ratio must be in [0, 1]") if self.alpha < 0.0: raise ValueError("alpha must be >= 0") if self.n_iter_no_change < 1: raise ValueError("n_iter_no_change must be >= 1") if not (0.0 < self.validation_fraction < 1.0): raise ValueError("validation_fraction must be in range (0, 1)") if self.learning_rate in ("constant", "invscaling", "adaptive"): if self.eta0 <= 0.0: raise ValueError("eta0 must be > 0") if self.learning_rate == "optimal" and self.alpha == 0: raise ValueError("alpha must be > 0 since " "learning_rate is 'optimal'. alpha is used " "to compute the optimal learning rate.") # raises ValueError if not registered self._get_penalty_type(self.penalty) self._get_learning_rate_type(self.learning_rate) if self.loss not in self.loss_functions: raise ValueError("The loss %s is not supported. " % self.loss) def _get_loss_function(self, loss): """Get concrete ``LossFunction`` object for str ``loss``. """ try: loss_ = self.loss_functions[loss] loss_class, args = loss_[0], loss_[1:] if loss in ('huber', 'epsilon_insensitive', 'squared_epsilon_insensitive'): args = (self.epsilon, ) return loss_class(*args) except KeyError as e: raise ValueError("The loss %s is not supported. " % loss) from e def _get_learning_rate_type(self, learning_rate): try: return LEARNING_RATE_TYPES[learning_rate] except KeyError as e: raise ValueError("learning rate %s " "is not supported. " % learning_rate) from e def _get_penalty_type(self, penalty): penalty = str(penalty).lower() try: return PENALTY_TYPES[penalty] except KeyError as e: raise ValueError("Penalty %s is not supported. " % penalty) from e def _allocate_parameter_mem(self, n_classes, n_features, coef_init=None, intercept_init=None): """Allocate mem for parameters; initialize if provided.""" if n_classes > 2: # allocate coef_ for multi-class if coef_init is not None: coef_init = np.asarray(coef_init, order="C") if coef_init.shape != (n_classes, n_features): raise ValueError("Provided ``coef_`` does not match " "dataset. ") self.coef_ = coef_init else: self.coef_ = np.zeros((n_classes, n_features), dtype=np.float64, order="C") # allocate intercept_ for multi-class if intercept_init is not None: intercept_init = np.asarray(intercept_init, order="C") if intercept_init.shape != (n_classes, ): raise ValueError("Provided intercept_init " "does not match dataset.") self.intercept_ = intercept_init else: self.intercept_ = np.zeros(n_classes, dtype=np.float64, order="C") else: # allocate coef_ for binary problem if coef_init is not None: coef_init = np.asarray(coef_init, dtype=np.float64, order="C") coef_init = coef_init.ravel() if coef_init.shape != (n_features,): raise ValueError("Provided coef_init does not " "match dataset.") self.coef_ = coef_init else: self.coef_ = np.zeros(n_features, dtype=np.float64, order="C") # allocate intercept_ for binary problem if intercept_init is not None: intercept_init = np.asarray(intercept_init, dtype=np.float64) if intercept_init.shape != (1,) and intercept_init.shape != (): raise ValueError("Provided intercept_init " "does not match dataset.") self.intercept_ = intercept_init.reshape(1,) else: self.intercept_ = np.zeros(1, dtype=np.float64, order="C") # initialize average parameters if self.average > 0: self._standard_coef = self.coef_ self._standard_intercept = self.intercept_ self._average_coef = np.zeros(self.coef_.shape, dtype=np.float64, order="C") self._average_intercept = np.zeros(self._standard_intercept.shape, dtype=np.float64, order="C") def _make_validation_split(self, y): """Split the dataset between training set and validation set. Parameters ---------- y : ndarray of shape (n_samples, ) Target values. Returns ------- validation_mask : ndarray of shape (n_samples, ) Equal to 1 on the validation set, 0 on the training set. """ n_samples = y.shape[0] validation_mask = np.zeros(n_samples, dtype=np.uint8) if not self.early_stopping: # use the full set for training, with an empty validation set return validation_mask if is_classifier(self): splitter_type = StratifiedShuffleSplit else: splitter_type = ShuffleSplit cv = splitter_type(test_size=self.validation_fraction, random_state=self.random_state) idx_train, idx_val = next(cv.split(np.zeros(shape=(y.shape[0], 1)), y)) if idx_train.shape[0] == 0 or idx_val.shape[0] == 0: raise ValueError( "Splitting %d samples into a train set and a validation set " "with validation_fraction=%r led to an empty set (%d and %d " "samples). Please either change validation_fraction, increase " "number of samples, or disable early_stopping." % (n_samples, self.validation_fraction, idx_train.shape[0], idx_val.shape[0])) validation_mask[idx_val] = 1 return validation_mask def _make_validation_score_cb(self, validation_mask, X, y, sample_weight, classes=None): if not self.early_stopping: return None return _ValidationScoreCallback( self, X[validation_mask], y[validation_mask], sample_weight[validation_mask], classes=classes) # mypy error: Decorated property not supported @deprecated("Attribute standard_coef_ was deprecated " # type: ignore "in version 0.23 and will be removed in 1.0 " "(renaming of 0.25).") @property def standard_coef_(self): return self._standard_coef # mypy error: Decorated property not supported @deprecated( # type: ignore "Attribute standard_intercept_ was deprecated " "in version 0.23 and will be removed in 1.0 (renaming of 0.25)." ) @property def standard_intercept_(self): return self._standard_intercept # mypy error: Decorated property not supported @deprecated("Attribute average_coef_ was deprecated " # type: ignore "in version 0.23 and will be removed in 1.0 " "(renaming of 0.25).") @property def average_coef_(self): return self._average_coef # mypy error: Decorated property not supported @deprecated("Attribute average_intercept_ was deprecated " # type: ignore "in version 0.23 and will be removed in 1.0 " "(renaming of 0.25).") @property def average_intercept_(self): return self._average_intercept def _prepare_fit_binary(est, y, i): """Initialization for fit_binary. Returns y, coef, intercept, average_coef, average_intercept. """ y_i = np.ones(y.shape, dtype=np.float64, order="C") y_i[y != est.classes_[i]] = -1.0 average_intercept = 0 average_coef = None if len(est.classes_) == 2: if not est.average: coef = est.coef_.ravel() intercept = est.intercept_[0] else: coef = est._standard_coef.ravel() intercept = est._standard_intercept[0] average_coef = est._average_coef.ravel() average_intercept = est._average_intercept[0] else: if not est.average: coef = est.coef_[i] intercept = est.intercept_[i] else: coef = est._standard_coef[i] intercept = est._standard_intercept[i] average_coef = est._average_coef[i] average_intercept = est._average_intercept[i] return y_i, coef, intercept, average_coef, average_intercept def fit_binary(est, i, X, y, alpha, C, learning_rate, max_iter, pos_weight, neg_weight, sample_weight, validation_mask=None, random_state=None): """Fit a single binary classifier. The i'th class is considered the "positive" class. Parameters ---------- est : Estimator object The estimator to fit i : int Index of the positive class X : numpy array or sparse matrix of shape [n_samples,n_features] Training data y : numpy array of shape [n_samples, ] Target values alpha : float The regularization parameter C : float Maximum step size for passive aggressive learning_rate : string The learning rate. Accepted values are 'constant', 'optimal', 'invscaling', 'pa1' and 'pa2'. max_iter : int The maximum number of iterations (epochs) pos_weight : float The weight of the positive class neg_weight : float The weight of the negative class sample_weight : numpy array of shape [n_samples, ] The weight of each sample validation_mask : numpy array of shape [n_samples, ], default=None Precomputed validation mask in case _fit_binary is called in the context of a one-vs-rest reduction. random_state : int, RandomState instance, default=None If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. """ # if average is not true, average_coef, and average_intercept will be # unused y_i, coef, intercept, average_coef, average_intercept = \ _prepare_fit_binary(est, y, i) assert y_i.shape[0] == y.shape[0] == sample_weight.shape[0] random_state = check_random_state(random_state) dataset, intercept_decay = make_dataset( X, y_i, sample_weight, random_state=random_state) penalty_type = est._get_penalty_type(est.penalty) learning_rate_type = est._get_learning_rate_type(learning_rate) if validation_mask is None: validation_mask = est._make_validation_split(y_i) classes = np.array([-1, 1], dtype=y_i.dtype) validation_score_cb = est._make_validation_score_cb( validation_mask, X, y_i, sample_weight, classes=classes) # numpy mtrand expects a C long which is a signed 32 bit integer under # Windows seed = random_state.randint(MAX_INT) tol = est.tol if est.tol is not None else -np.inf coef, intercept, average_coef, average_intercept, n_iter_ = _plain_sgd( coef, intercept, average_coef, average_intercept, est.loss_function_, penalty_type, alpha, C, est.l1_ratio, dataset, validation_mask, est.early_stopping, validation_score_cb, int(est.n_iter_no_change), max_iter, tol, int(est.fit_intercept), int(est.verbose), int(est.shuffle), seed, pos_weight, neg_weight, learning_rate_type, est.eta0, est.power_t, est.t_, intercept_decay, est.average) if est.average: if len(est.classes_) == 2: est._average_intercept[0] = average_intercept else: est._average_intercept[i] = average_intercept return coef, intercept, n_iter_ class BaseSGDClassifier(LinearClassifierMixin, BaseSGD, metaclass=ABCMeta): loss_functions = { "hinge": (Hinge, 1.0), "squared_hinge": (SquaredHinge, 1.0), "perceptron": (Hinge, 0.0), "log": (Log, ), "modified_huber": (ModifiedHuber, ), "squared_loss": (SquaredLoss, ), "huber": (Huber, DEFAULT_EPSILON), "epsilon_insensitive": (EpsilonInsensitive, DEFAULT_EPSILON), "squared_epsilon_insensitive": (SquaredEpsilonInsensitive, DEFAULT_EPSILON), } @abstractmethod @_deprecate_positional_args def __init__(self, loss="hinge", *, penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, max_iter=1000, tol=1e-3, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, n_jobs=None, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, early_stopping=False, validation_fraction=0.1, n_iter_no_change=5, class_weight=None, warm_start=False, average=False): super().__init__( loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, max_iter=max_iter, tol=tol, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, early_stopping=early_stopping, validation_fraction=validation_fraction, n_iter_no_change=n_iter_no_change, warm_start=warm_start, average=average) self.class_weight = class_weight self.n_jobs = n_jobs def _partial_fit(self, X, y, alpha, C, loss, learning_rate, max_iter, classes, sample_weight, coef_init, intercept_init): X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64, order="C", accept_large_sparse=False) n_samples, n_features = X.shape _check_partial_fit_first_call(self, classes) n_classes = self.classes_.shape[0] # Allocate datastructures from input arguments self._expanded_class_weight = compute_class_weight( self.class_weight, classes=self.classes_, y=y) sample_weight = _check_sample_weight(sample_weight, X) if getattr(self, "coef_", None) is None or coef_init is not None: self._allocate_parameter_mem(n_classes, n_features, coef_init, intercept_init) elif n_features != self.coef_.shape[-1]: raise ValueError("Number of features %d does not match previous " "data %d." % (n_features, self.coef_.shape[-1])) self.loss_function_ = self._get_loss_function(loss) if not hasattr(self, "t_"): self.t_ = 1.0 # delegate to concrete training procedure if n_classes > 2: self._fit_multiclass(X, y, alpha=alpha, C=C, learning_rate=learning_rate, sample_weight=sample_weight, max_iter=max_iter) elif n_classes == 2: self._fit_binary(X, y, alpha=alpha, C=C, learning_rate=learning_rate, sample_weight=sample_weight, max_iter=max_iter) else: raise ValueError( "The number of classes has to be greater than one;" " got %d class" % n_classes) return self def _fit(self, X, y, alpha, C, loss, learning_rate, coef_init=None, intercept_init=None, sample_weight=None): self._validate_params() if hasattr(self, "classes_"): self.classes_ = None X, y = self._validate_data(X, y, accept_sparse='csr', dtype=np.float64, order="C", accept_large_sparse=False) # labels can be encoded as float, int, or string literals # np.unique sorts in asc order; largest class id is positive class classes = np.unique(y) if self.warm_start and hasattr(self, "coef_"): if coef_init is None: coef_init = self.coef_ if intercept_init is None: intercept_init = self.intercept_ else: self.coef_ = None self.intercept_ = None if self.average > 0: self._standard_coef = self.coef_ self._standard_intercept = self.intercept_ self._average_coef = None self._average_intercept = None # Clear iteration count for multiple call to fit. self.t_ = 1.0 self._partial_fit(X, y, alpha, C, loss, learning_rate, self.max_iter, classes, sample_weight, coef_init, intercept_init) if (self.tol is not None and self.tol > -np.inf and self.n_iter_ == self.max_iter): warnings.warn("Maximum number of iteration reached before " "convergence. Consider increasing max_iter to " "improve the fit.", ConvergenceWarning) return self def _fit_binary(self, X, y, alpha, C, sample_weight, learning_rate, max_iter): """Fit a binary classifier on X and y. """ coef, intercept, n_iter_ = fit_binary(self, 1, X, y, alpha, C, learning_rate, max_iter, self._expanded_class_weight[1], self._expanded_class_weight[0], sample_weight, random_state=self.random_state) self.t_ += n_iter_ * X.shape[0] self.n_iter_ = n_iter_ # need to be 2d if self.average > 0: if self.average <= self.t_ - 1: self.coef_ = self._average_coef.reshape(1, -1) self.intercept_ = self._average_intercept else: self.coef_ = self._standard_coef.reshape(1, -1) self._standard_intercept = np.atleast_1d(intercept) self.intercept_ = self._standard_intercept else: self.coef_ = coef.reshape(1, -1) # intercept is a float, need to convert it to an array of length 1 self.intercept_ = np.atleast_1d(intercept) def _fit_multiclass(self, X, y, alpha, C, learning_rate, sample_weight, max_iter): """Fit a multi-class classifier by combining binary classifiers Each binary classifier predicts one class versus all others. This strategy is called OvA (One versus All) or OvR (One versus Rest). """ # Precompute the validation split using the multiclass labels # to ensure proper balancing of the classes. validation_mask = self._make_validation_split(y) # Use joblib to fit OvA in parallel. # Pick the random seed for each job outside of fit_binary to avoid # sharing the estimator random state between threads which could lead # to non-deterministic behavior random_state = check_random_state(self.random_state) seeds = random_state.randint(MAX_INT, size=len(self.classes_)) result = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, **_joblib_parallel_args(require="sharedmem"))( delayed(fit_binary)(self, i, X, y, alpha, C, learning_rate, max_iter, self._expanded_class_weight[i], 1., sample_weight, validation_mask=validation_mask, random_state=seed) for i, seed in enumerate(seeds)) # take the maximum of n_iter_ over every binary fit n_iter_ = 0. for i, (_, intercept, n_iter_i) in enumerate(result): self.intercept_[i] = intercept n_iter_ = max(n_iter_, n_iter_i) self.t_ += n_iter_ * X.shape[0] self.n_iter_ = n_iter_ if self.average > 0: if self.average <= self.t_ - 1.0: self.coef_ = self._average_coef self.intercept_ = self._average_intercept else: self.coef_ = self._standard_coef self._standard_intercept = np.atleast_1d(self.intercept_) self.intercept_ = self._standard_intercept def partial_fit(self, X, y, classes=None, sample_weight=None): """Perform one epoch of stochastic gradient descent on given samples. Internally, this method uses ``max_iter = 1``. Therefore, it is not guaranteed that a minimum of the cost function is reached after calling it once. Matters such as objective convergence and early stopping should be handled by the user. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Subset of the training data. y : ndarray of shape (n_samples,) Subset of the target values. classes : ndarray of shape (n_classes,), default=None Classes across all calls to partial_fit. Can be obtained by via `np.unique(y_all)`, where y_all is the target vector of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note that y doesn't need to contain all labels in `classes`. sample_weight : array-like, shape (n_samples,), default=None Weights applied to individual samples. If not provided, uniform weights are assumed. Returns ------- self : Returns an instance of self. """ self._validate_params(for_partial_fit=True) if self.class_weight in ['balanced']: raise ValueError("class_weight '{0}' is not supported for " "partial_fit. In order to use 'balanced' weights," " use compute_class_weight('{0}', " "classes=classes, y=y). " "In place of y you can us a large enough sample " "of the full training set target to properly " "estimate the class frequency distributions. " "Pass the resulting weights as the class_weight " "parameter.".format(self.class_weight)) return self._partial_fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, max_iter=1, classes=classes, sample_weight=sample_weight, coef_init=None, intercept_init=None) def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray of shape (n_samples,) Target values. coef_init : ndarray of shape (n_classes, n_features), default=None The initial coefficients to warm-start the optimization. intercept_init : ndarray of shape (n_classes,), default=None The initial intercept to warm-start the optimization. sample_weight : array-like, shape (n_samples,), default=None Weights applied to individual samples. If not provided, uniform weights are assumed. These weights will be multiplied with class_weight (passed through the constructor) if class_weight is specified. Returns ------- self : Returns an instance of self. """ return self._fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, coef_init=coef_init, intercept_init=intercept_init, sample_weight=sample_weight) class SGDClassifier(BaseSGDClassifier): """Linear classifiers (SVM, logistic regression, etc.) with SGD training. This estimator implements regularized linear models with stochastic gradient descent (SGD) learning: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate). SGD allows minibatch (online/out-of-core) learning via the `partial_fit` method. For best results using the default learning rate schedule, the data should have zero mean and unit variance. This implementation works with data represented as dense or sparse arrays of floating point values for the features. The model it fits can be controlled with the loss parameter; by default, it fits a linear support vector machine (SVM). The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning sparse models and achieve online feature selection. Read more in the :ref:`User Guide <sgd>`. Parameters ---------- loss : str, default='hinge' The loss function to be used. Defaults to 'hinge', which gives a linear SVM. The possible options are 'hinge', 'log', 'modified_huber', 'squared_hinge', 'perceptron', or a regression loss: 'squared_loss', 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. The 'log' loss gives logistic regression, a probabilistic classifier. 'modified_huber' is another smooth loss that brings tolerance to outliers as well as probability estimates. 'squared_hinge' is like hinge but is quadratically penalized. 'perceptron' is the linear loss used by the perceptron algorithm. The other losses are designed for regression but can be useful in classification as well; see :class:`~sklearn.linear_model.SGDRegressor` for a description. More details about the losses formulas can be found in the :ref:`User Guide <sgd_mathematical_formulation>`. penalty : {'l2', 'l1', 'elasticnet'}, default='l2' The penalty (aka regularization term) to be used. Defaults to 'l2' which is the standard regularizer for linear SVM models. 'l1' and 'elasticnet' might bring sparsity to the model (feature selection) not achievable with 'l2'. alpha : float, default=0.0001 Constant that multiplies the regularization term. The higher the value, the stronger the regularization. Also used to compute the learning rate when set to `learning_rate` is set to 'optimal'. l1_ratio : float, default=0.15 The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Only used if `penalty` is 'elasticnet'. fit_intercept : bool, default=True Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. max_iter : int, default=1000 The maximum number of passes over the training data (aka epochs). It only impacts the behavior in the ``fit`` method, and not the :meth:`partial_fit` method. .. versionadded:: 0.19 tol : float, default=1e-3 The stopping criterion. If it is not None, training will stop when (loss > best_loss - tol) for ``n_iter_no_change`` consecutive epochs. .. versionadded:: 0.19 shuffle : bool, default=True Whether or not the training data should be shuffled after each epoch. verbose : int, default=0 The verbosity level. epsilon : float, default=0.1 Epsilon in the epsilon-insensitive loss functions; only if `loss` is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. For 'huber', determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. n_jobs : int, default=None The number of CPUs to use to do the OVA (One Versus All, for multi-class problems) computation. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. random_state : int, RandomState instance, default=None Used for shuffling the data, when ``shuffle`` is set to ``True``. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. learning_rate : str, default='optimal' The learning rate schedule: - 'constant': `eta = eta0` - 'optimal': `eta = 1.0 / (alpha * (t + t0))` where t0 is chosen by a heuristic proposed by Leon Bottou. - 'invscaling': `eta = eta0 / pow(t, power_t)` - 'adaptive': eta = eta0, as long as the training keeps decreasing. Each time n_iter_no_change consecutive epochs fail to decrease the training loss by tol or fail to increase validation score by tol if early_stopping is True, the current learning rate is divided by 5. .. versionadded:: 0.20 Added 'adaptive' option eta0 : double, default=0.0 The initial learning rate for the 'constant', 'invscaling' or 'adaptive' schedules. The default value is 0.0 as eta0 is not used by the default schedule 'optimal'. power_t : double, default=0.5 The exponent for inverse scaling learning rate [default 0.5]. early_stopping : bool, default=False Whether to use early stopping to terminate training when validation score is not improving. If set to True, it will automatically set aside a stratified fraction of training data as validation and terminate training when validation score returned by the `score` method is not improving by at least tol for n_iter_no_change consecutive epochs. .. versionadded:: 0.20 Added 'early_stopping' option validation_fraction : float, default=0.1 The proportion of training data to set aside as validation set for early stopping. Must be between 0 and 1. Only used if `early_stopping` is True. .. versionadded:: 0.20 Added 'validation_fraction' option n_iter_no_change : int, default=5 Number of iterations with no improvement to wait before early stopping. .. versionadded:: 0.20 Added 'n_iter_no_change' option class_weight : dict, {class_label: weight} or "balanced", default=None Preset for the class_weight fit parameter. Weights associated with classes. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))``. warm_start : bool, default=False When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. See :term:`the Glossary <warm_start>`. Repeatedly calling fit or partial_fit when warm_start is True can result in a different solution than when calling fit a single time because of the way the data is shuffled. If a dynamic learning rate is used, the learning rate is adapted depending on the number of samples already seen. Calling ``fit`` resets this counter, while ``partial_fit`` will result in increasing the existing counter. average : bool or int, default=False When set to True, computes the averaged SGD weights accross all updates and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches `average`. So ``average=10`` will begin averaging after seeing 10 samples. Attributes ---------- coef_ : ndarray of shape (1, n_features) if n_classes == 2 else \ (n_classes, n_features) Weights assigned to the features. intercept_ : ndarray of shape (1,) if n_classes == 2 else (n_classes,) Constants in decision function. n_iter_ : int The actual number of iterations before reaching the stopping criterion. For multiclass fits, it is the maximum over every binary fit. loss_function_ : concrete ``LossFunction`` classes_ : array of shape (n_classes,) t_ : int Number of weight updates performed during training. Same as ``(n_iter_ * n_samples)``. See Also -------- sklearn.svm.LinearSVC : Linear support vector classification. LogisticRegression : Logistic regression. Perceptron : Inherits from SGDClassifier. ``Perceptron()`` is equivalent to ``SGDClassifier(loss="perceptron", eta0=1, learning_rate="constant", penalty=None)``. Examples -------- >>> import numpy as np >>> from sklearn.linear_model import SGDClassifier >>> from sklearn.preprocessing import StandardScaler >>> from sklearn.pipeline import make_pipeline >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> Y = np.array([1, 1, 2, 2]) >>> # Always scale the input. The most convenient way is to use a pipeline. >>> clf = make_pipeline(StandardScaler(), ... SGDClassifier(max_iter=1000, tol=1e-3)) >>> clf.fit(X, Y) Pipeline(steps=[('standardscaler', StandardScaler()), ('sgdclassifier', SGDClassifier())]) >>> print(clf.predict([[-0.8, -1]])) [1] """ @_deprecate_positional_args def __init__(self, loss="hinge", *, penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, max_iter=1000, tol=1e-3, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, n_jobs=None, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, early_stopping=False, validation_fraction=0.1, n_iter_no_change=5, class_weight=None, warm_start=False, average=False): super().__init__( loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, max_iter=max_iter, tol=tol, shuffle=shuffle, verbose=verbose, epsilon=epsilon, n_jobs=n_jobs, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, early_stopping=early_stopping, validation_fraction=validation_fraction, n_iter_no_change=n_iter_no_change, class_weight=class_weight, warm_start=warm_start, average=average) def _check_proba(self): if self.loss not in ("log", "modified_huber"): raise AttributeError("probability estimates are not available for" " loss=%r" % self.loss) @property def predict_proba(self): """Probability estimates. This method is only available for log loss and modified Huber loss. Multiclass probability estimates are derived from binary (one-vs.-rest) estimates by simple normalization, as recommended by Zadrozny and Elkan. Binary probability estimates for loss="modified_huber" are given by (clip(decision_function(X), -1, 1) + 1) / 2. For other loss functions it is necessary to perform proper probability calibration by wrapping the classifier with :class:`~sklearn.calibration.CalibratedClassifierCV` instead. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Input data for prediction. Returns ------- ndarray of shape (n_samples, n_classes) Returns the probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. References ---------- Zadrozny and Elkan, "Transforming classifier scores into multiclass probability estimates", SIGKDD'02, http://www.research.ibm.com/people/z/zadrozny/kdd2002-Transf.pdf The justification for the formula in the loss="modified_huber" case is in the appendix B in: http://jmlr.csail.mit.edu/papers/volume2/zhang02c/zhang02c.pdf """ self._check_proba() return self._predict_proba def _predict_proba(self, X): check_is_fitted(self) if self.loss == "log": return self._predict_proba_lr(X) elif self.loss == "modified_huber": binary = (len(self.classes_) == 2) scores = self.decision_function(X) if binary: prob2 = np.ones((scores.shape[0], 2)) prob = prob2[:, 1] else: prob = scores np.clip(scores, -1, 1, prob) prob += 1. prob /= 2. if binary: prob2[:, 0] -= prob prob = prob2 else: # the above might assign zero to all classes, which doesn't # normalize neatly; work around this to produce uniform # probabilities prob_sum = prob.sum(axis=1) all_zero = (prob_sum == 0) if np.any(all_zero): prob[all_zero, :] = 1 prob_sum[all_zero] = len(self.classes_) # normalize prob /= prob_sum.reshape((prob.shape[0], -1)) return prob else: raise NotImplementedError("predict_(log_)proba only supported when" " loss='log' or loss='modified_huber' " "(%r given)" % self.loss) @property def predict_log_proba(self): """Log of probability estimates. This method is only available for log loss and modified Huber loss. When loss="modified_huber", probability estimates may be hard zeros and ones, so taking the logarithm is not possible. See ``predict_proba`` for details. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Input data for prediction. Returns ------- T : array-like, shape (n_samples, n_classes) Returns the log-probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. """ self._check_proba() return self._predict_log_proba def _predict_log_proba(self, X): return np.log(self.predict_proba(X)) def _more_tags(self): return { '_xfail_checks': { 'check_sample_weights_invariance': 'zero sample_weight is not equivalent to removing samples', } } class BaseSGDRegressor(RegressorMixin, BaseSGD): loss_functions = { "squared_loss": (SquaredLoss, ), "huber": (Huber, DEFAULT_EPSILON), "epsilon_insensitive": (EpsilonInsensitive, DEFAULT_EPSILON), "squared_epsilon_insensitive": (SquaredEpsilonInsensitive, DEFAULT_EPSILON), } @abstractmethod @_deprecate_positional_args def __init__(self, loss="squared_loss", *, penalty="l2", alpha=0.0001, l1_ratio=0.15, fit_intercept=True, max_iter=1000, tol=1e-3, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, random_state=None, learning_rate="invscaling", eta0=0.01, power_t=0.25, early_stopping=False, validation_fraction=0.1, n_iter_no_change=5, warm_start=False, average=False): super().__init__( loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, max_iter=max_iter, tol=tol, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, early_stopping=early_stopping, validation_fraction=validation_fraction, n_iter_no_change=n_iter_no_change, warm_start=warm_start, average=average) def _partial_fit(self, X, y, alpha, C, loss, learning_rate, max_iter, sample_weight, coef_init, intercept_init): X, y = self._validate_data(X, y, accept_sparse="csr", copy=False, order='C', dtype=np.float64, accept_large_sparse=False) y = y.astype(np.float64, copy=False) n_samples, n_features = X.shape sample_weight = _check_sample_weight(sample_weight, X) # Allocate datastructures from input arguments if getattr(self, "coef_", None) is None: self._allocate_parameter_mem(1, n_features, coef_init, intercept_init) elif n_features != self.coef_.shape[-1]: raise ValueError("Number of features %d does not match previous " "data %d." % (n_features, self.coef_.shape[-1])) if self.average > 0 and getattr(self, "_average_coef", None) is None: self._average_coef = np.zeros(n_features, dtype=np.float64, order="C") self._average_intercept = np.zeros(1, dtype=np.float64, order="C") self._fit_regressor(X, y, alpha, C, loss, learning_rate, sample_weight, max_iter) return self def partial_fit(self, X, y, sample_weight=None): """Perform one epoch of stochastic gradient descent on given samples. Internally, this method uses ``max_iter = 1``. Therefore, it is not guaranteed that a minimum of the cost function is reached after calling it once. Matters such as objective convergence and early stopping should be handled by the user. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Subset of training data y : numpy array of shape (n_samples,) Subset of target values sample_weight : array-like, shape (n_samples,), default=None Weights applied to individual samples. If not provided, uniform weights are assumed. Returns ------- self : returns an instance of self. """ self._validate_params(for_partial_fit=True) return self._partial_fit(X, y, self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, max_iter=1, sample_weight=sample_weight, coef_init=None, intercept_init=None) def _fit(self, X, y, alpha, C, loss, learning_rate, coef_init=None, intercept_init=None, sample_weight=None): self._validate_params() if self.warm_start and getattr(self, "coef_", None) is not None: if coef_init is None: coef_init = self.coef_ if intercept_init is None: intercept_init = self.intercept_ else: self.coef_ = None self.intercept_ = None # Clear iteration count for multiple call to fit. self.t_ = 1.0 self._partial_fit(X, y, alpha, C, loss, learning_rate, self.max_iter, sample_weight, coef_init, intercept_init) if (self.tol is not None and self.tol > -np.inf and self.n_iter_ == self.max_iter): warnings.warn("Maximum number of iteration reached before " "convergence. Consider increasing max_iter to " "improve the fit.", ConvergenceWarning) return self def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : ndarray of shape (n_samples,) Target values coef_init : ndarray of shape (n_features,), default=None The initial coefficients to warm-start the optimization. intercept_init : ndarray of shape (1,), default=None The initial intercept to warm-start the optimization. sample_weight : array-like, shape (n_samples,), default=None Weights applied to individual samples (1. for unweighted). Returns ------- self : returns an instance of self. """ return self._fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, coef_init=coef_init, intercept_init=intercept_init, sample_weight=sample_weight) def _decision_function(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- ndarray of shape (n_samples,) Predicted target values per element in X. """ check_is_fitted(self) X = check_array(X, accept_sparse='csr') scores = safe_sparse_dot(X, self.coef_.T, dense_output=True) + self.intercept_ return scores.ravel() def predict(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- ndarray of shape (n_samples,) Predicted target values per element in X. """ return self._decision_function(X) def _fit_regressor(self, X, y, alpha, C, loss, learning_rate, sample_weight, max_iter): dataset, intercept_decay = make_dataset(X, y, sample_weight) loss_function = self._get_loss_function(loss) penalty_type = self._get_penalty_type(self.penalty) learning_rate_type = self._get_learning_rate_type(learning_rate) if not hasattr(self, "t_"): self.t_ = 1.0 validation_mask = self._make_validation_split(y) validation_score_cb = self._make_validation_score_cb( validation_mask, X, y, sample_weight) random_state = check_random_state(self.random_state) # numpy mtrand expects a C long which is a signed 32 bit integer under # Windows seed = random_state.randint(0, np.iinfo(np.int32).max) tol = self.tol if self.tol is not None else -np.inf if self.average: coef = self._standard_coef intercept = self._standard_intercept average_coef = self._average_coef average_intercept = self._average_intercept else: coef = self.coef_ intercept = self.intercept_ average_coef = None # Not used average_intercept = [0] # Not used coef, intercept, average_coef, average_intercept, self.n_iter_ = \ _plain_sgd(coef, intercept[0], average_coef, average_intercept[0], loss_function, penalty_type, alpha, C, self.l1_ratio, dataset, validation_mask, self.early_stopping, validation_score_cb, int(self.n_iter_no_change), max_iter, tol, int(self.fit_intercept), int(self.verbose), int(self.shuffle), seed, 1.0, 1.0, learning_rate_type, self.eta0, self.power_t, self.t_, intercept_decay, self.average) self.t_ += self.n_iter_ * X.shape[0] if self.average > 0: self._average_intercept = np.atleast_1d(average_intercept) self._standard_intercept = np.atleast_1d(intercept) if self.average <= self.t_ - 1.0: # made enough updates for averaging to be taken into account self.coef_ = average_coef self.intercept_ = np.atleast_1d(average_intercept) else: self.coef_ = coef self.intercept_ = np.atleast_1d(intercept) else: self.intercept_ = np.atleast_1d(intercept) class SGDRegressor(BaseSGDRegressor): """Linear model fitted by minimizing a regularized empirical loss with SGD SGD stands for Stochastic Gradient Descent: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate). The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning sparse models and achieve online feature selection. This implementation works with data represented as dense numpy arrays of floating point values for the features. Read more in the :ref:`User Guide <sgd>`. Parameters ---------- loss : str, default='squared_loss' The loss function to be used. The possible values are 'squared_loss', 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive' The 'squared_loss' refers to the ordinary least squares fit. 'huber' modifies 'squared_loss' to focus less on getting outliers correct by switching from squared to linear loss past a distance of epsilon. 'epsilon_insensitive' ignores errors less than epsilon and is linear past that; this is the loss function used in SVR. 'squared_epsilon_insensitive' is the same but becomes squared loss past a tolerance of epsilon. More details about the losses formulas can be found in the :ref:`User Guide <sgd_mathematical_formulation>`. penalty : {'l2', 'l1', 'elasticnet'}, default='l2' The penalty (aka regularization term) to be used. Defaults to 'l2' which is the standard regularizer for linear SVM models. 'l1' and 'elasticnet' might bring sparsity to the model (feature selection) not achievable with 'l2'. alpha : float, default=0.0001 Constant that multiplies the regularization term. The higher the value, the stronger the regularization. Also used to compute the learning rate when set to `learning_rate` is set to 'optimal'. l1_ratio : float, default=0.15 The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Only used if `penalty` is 'elasticnet'. fit_intercept : bool, default=True Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. max_iter : int, default=1000 The maximum number of passes over the training data (aka epochs). It only impacts the behavior in the ``fit`` method, and not the :meth:`partial_fit` method. .. versionadded:: 0.19 tol : float, default=1e-3 The stopping criterion. If it is not None, training will stop when (loss > best_loss - tol) for ``n_iter_no_change`` consecutive epochs. .. versionadded:: 0.19 shuffle : bool, default=True Whether or not the training data should be shuffled after each epoch. verbose : int, default=0 The verbosity level. epsilon : float, default=0.1 Epsilon in the epsilon-insensitive loss functions; only if `loss` is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. For 'huber', determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. random_state : int, RandomState instance, default=None Used for shuffling the data, when ``shuffle`` is set to ``True``. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. learning_rate : string, default='invscaling' The learning rate schedule: - 'constant': `eta = eta0` - 'optimal': `eta = 1.0 / (alpha * (t + t0))` where t0 is chosen by a heuristic proposed by Leon Bottou. - 'invscaling': `eta = eta0 / pow(t, power_t)` - 'adaptive': eta = eta0, as long as the training keeps decreasing. Each time n_iter_no_change consecutive epochs fail to decrease the training loss by tol or fail to increase validation score by tol if early_stopping is True, the current learning rate is divided by 5. .. versionadded:: 0.20 Added 'adaptive' option eta0 : double, default=0.01 The initial learning rate for the 'constant', 'invscaling' or 'adaptive' schedules. The default value is 0.01. power_t : double, default=0.25 The exponent for inverse scaling learning rate. early_stopping : bool, default=False Whether to use early stopping to terminate training when validation score is not improving. If set to True, it will automatically set aside a fraction of training data as validation and terminate training when validation score returned by the `score` method is not improving by at least `tol` for `n_iter_no_change` consecutive epochs. .. versionadded:: 0.20 Added 'early_stopping' option validation_fraction : float, default=0.1 The proportion of training data to set aside as validation set for early stopping. Must be between 0 and 1. Only used if `early_stopping` is True. .. versionadded:: 0.20 Added 'validation_fraction' option n_iter_no_change : int, default=5 Number of iterations with no improvement to wait before early stopping. .. versionadded:: 0.20 Added 'n_iter_no_change' option warm_start : bool, default=False When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. See :term:`the Glossary <warm_start>`. Repeatedly calling fit or partial_fit when warm_start is True can result in a different solution than when calling fit a single time because of the way the data is shuffled. If a dynamic learning rate is used, the learning rate is adapted depending on the number of samples already seen. Calling ``fit`` resets this counter, while ``partial_fit`` will result in increasing the existing counter. average : bool or int, default=False When set to True, computes the averaged SGD weights accross all updates and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches `average`. So ``average=10`` will begin averaging after seeing 10 samples. Attributes ---------- coef_ : ndarray of shape (n_features,) Weights assigned to the features. intercept_ : ndarray of shape (1,) The intercept term. average_coef_ : ndarray of shape (n_features,) Averaged weights assigned to the features. Only available if ``average=True``. .. deprecated:: 0.23 Attribute ``average_coef_`` was deprecated in version 0.23 and will be removed in 1.0 (renaming of 0.25). average_intercept_ : ndarray of shape (1,) The averaged intercept term. Only available if ``average=True``. .. deprecated:: 0.23 Attribute ``average_intercept_`` was deprecated in version 0.23 and will be removed in 1.0 (renaming of 0.25). n_iter_ : int The actual number of iterations before reaching the stopping criterion. t_ : int Number of weight updates performed during training. Same as ``(n_iter_ * n_samples)``. Examples -------- >>> import numpy as np >>> from sklearn.linear_model import SGDRegressor >>> from sklearn.pipeline import make_pipeline >>> from sklearn.preprocessing import StandardScaler >>> n_samples, n_features = 10, 5 >>> rng = np.random.RandomState(0) >>> y = rng.randn(n_samples) >>> X = rng.randn(n_samples, n_features) >>> # Always scale the input. The most convenient way is to use a pipeline. >>> reg = make_pipeline(StandardScaler(), ... SGDRegressor(max_iter=1000, tol=1e-3)) >>> reg.fit(X, y) Pipeline(steps=[('standardscaler', StandardScaler()), ('sgdregressor', SGDRegressor())]) See Also -------- Ridge, ElasticNet, Lasso, sklearn.svm.SVR """ @_deprecate_positional_args def __init__(self, loss="squared_loss", *, penalty="l2", alpha=0.0001, l1_ratio=0.15, fit_intercept=True, max_iter=1000, tol=1e-3, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, random_state=None, learning_rate="invscaling", eta0=0.01, power_t=0.25, early_stopping=False, validation_fraction=0.1, n_iter_no_change=5, warm_start=False, average=False): super().__init__( loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, max_iter=max_iter, tol=tol, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, early_stopping=early_stopping, validation_fraction=validation_fraction, n_iter_no_change=n_iter_no_change, warm_start=warm_start, average=average) def _more_tags(self): return { '_xfail_checks': { 'check_sample_weights_invariance': 'zero sample_weight is not equivalent to removing samples', } }
py
1a2ea4a95b867ca5afe641e37e6aa7e734f024ea
""" Compai core functions """ from functools import partial, reduce, wraps from operator import itemgetter from typing import Callable, List, TypeVar T = TypeVar('T') def compose(*F: List[Callable]): """Compose the list of functions in F from right to left Arguments: F: List of functions Examples: ```pycon >>> compose(lambda x: x + 1, lambda x: x * 2)(5) 11 >>> ``` """ return reduce(lambda f, g: lambda x: f(g(x)), F) def fmap(f): return partial(map, f) def ffilter(f): return partial(filter, f) def none_map(func, if_none=None): """Returns a function that will call func if the argument is not none, and return if_none otherwise. Examples: ```pycon >>> f = none_map(str, if_none=const(1)) >>> f(1) '1' >>> f(None) 1 >>> ``` """ @wraps(func) def _func(x): if x is not None: return func(x) return if_none() return _func def tupled(func): """Returns a tupled version of the function. Examples: ```pycon >>> tupled(lambda a, b: a + b)((2, 3)) 5 >>> ``` """ @wraps(func) def _func(x): return func(*x) return _func def tuple_map(*fs): """Returns a function that will apply every f_i for evey element of the tuple argument. Examples: ```pycon >>> inc = lambda x: x + 1 >>> tuple_map(None, inc)((1, 2)) (1, 3) >>> tuple_map(inc)((1, 2)) (2, 2) >>> ``` """ return compose( tuple, fmap( tupled(lambda i, v: fs[i](v) if i < len(fs) and fs[i] else v), ), enumerate, ) def dict_map(**fs): """Map especific elements in a dict. Examples: ```pycon >>> dict_map(a=int, b=str)(dict(a='1', b=123, c=True)) {'a': 1, 'b': '123', 'c': True} >>> ``` """ def _change_dict(d): d = d.copy() for k, f in fs.items(): if k in d: d[k] = f(d[k]) return d return _change_dict def identity(x): return x def apply(f, *args): return f(*args) def const(x: T) -> Callable[..., T]: """Returns a function that will always return `x`. Arguments: x: Any value Examples: ```pycon >>> f = const('foo') >>> f() 'foo' >>> f(1, a='brr') 'foo' >>> ``` """ return lambda *_, **__: x def length(xs): """Returns the length of xs. Examples: ```pycon >>> length([1, 2, 3]) 3 >>> length(range(10)) 10 >>> length(None for _ in range(10)) 10 >>> ``` """ len_ = getattr(xs, '__len__', None) def default_len(): return sum(1 for _ in xs) return compose( apply, none_map(identity, if_none=const(default_len)) )(len_) def swap(x): return itemgetter(1, 0)(x)
py
1a2ea62077698c22303df4b8b2247d3b05a6f55f
from datetime import datetime, timedelta import pytest import pytz from kaffepause.breaks.selectors import get_pending_break_invitations from kaffepause.breaks.test.factories import BreakFactory, BreakInvitationFactory pytestmark = pytest.mark.django_db def test_get_break_invitations_awaiting_reply_returns_unanswered_invitations(user): """Should return all non-expired break invitations the user has not replied to.""" unanswered_break_invitation = BreakInvitationFactory() unanswered_break_invitation.subject.connect(BreakFactory()) unanswered_break_invitation.addressees.connect(user) an_hour_ago = datetime.now(pytz.utc) - timedelta(hours=10) expired_break = BreakFactory() expired_break.starting_at = an_hour_ago expired_break.save() expired_break_invitation = BreakInvitationFactory() expired_break_invitation.subject.connect(expired_break) expired_break_invitation.addressees.connect(user) accepted_break_invitation = BreakInvitationFactory() accepted_break_invitation.subject.connect(BreakFactory()) accepted_break_invitation.addressees.connect(user) accepted_break_invitation.acceptees.connect(user) declined_break_invitation = BreakInvitationFactory() declined_break_invitation.subject.connect(BreakFactory()) declined_break_invitation.addressees.connect(user) declined_break_invitation.declinees.connect(user) actual_break_invitations = get_pending_break_invitations(actor=user) assert unanswered_break_invitation in actual_break_invitations assert expired_break_invitation not in actual_break_invitations assert accepted_break_invitation not in actual_break_invitations assert declined_break_invitation not in actual_break_invitations def test_get_break_invitations_awaiting_reply_returns_unanswered_invitations_expired_five_minutes_ago( user, ): """Should return unanswered invitations who's break has started within 5 minutes ago.""" two_minutes_ago = datetime.now(pytz.utc) - timedelta(minutes=2) non_expired_break = BreakFactory() non_expired_break.starting_at = two_minutes_ago non_expired_break.save() non_expired_break_invitation = BreakInvitationFactory() non_expired_break_invitation.subject.connect(non_expired_break) non_expired_break_invitation.addressees.connect(user) ten_minutes_ago = datetime.now(pytz.utc) - timedelta(minutes=10) expired_break = BreakFactory() expired_break.starting_at = ten_minutes_ago expired_break.save() expired_break_invitation = BreakInvitationFactory() expired_break_invitation.subject.connect(expired_break) expired_break_invitation.addressees.connect(user) actual_break_invitations = get_pending_break_invitations(actor=user) assert non_expired_break_invitation in actual_break_invitations assert expired_break_invitation not in actual_break_invitations
py
1a2ea6f5dd39841efa40a1e50731abfd2df8685c
import numpy as np from scipy.sparse import diags from scipy.sparse import kron from scipy.sparse import eye from .two_particles import TwoParticles from ..util.constants import * from .. import Eigenstates class TwoFermions(TwoParticles): def get_eigenstates(self, H, max_states, eigenvalues, eigenvectors): eigenvectors = eigenvectors.T.reshape(( max_states, *[H.N]*H.ndim) ) # Normalize the eigenvectors eigenvectors = eigenvectors/np.sqrt(H.dx**H.ndim) energies = [] eigenstates_array = [] #antisymmetrize eigenvectors: This is made by applying (𝜓(r1 , s1, r2 , s2) - 𝜓(r2 , s2, r1 , s1))/sqrt(2) to each state. for i in range(max_states): eigenstate_tmp = (eigenvectors[i] - eigenvectors[i].swapaxes(0,1))/np.sqrt(2) norm = np.sum(eigenstate_tmp*eigenstate_tmp)*H.dx**H.ndim TOL = 0.02 # check if is eigenstate_tmp is a normalizable eigenstate. (norm shouldn't be zero) if norm > TOL : # for some reason when the eigenstate is degenerated it isn't normalized #print("norm",norm) eigenstate_tmp = eigenstate_tmp/np.sqrt(norm) if eigenstates_array != []: #check if it's the first eigenstate inner_product = np.sum(eigenstates_array[-1]* eigenstate_tmp)*H.dx**H.ndim #print("inner_product",inner_product) else: inner_product = 0 if np.abs(inner_product) < TOL: # check if is eigenstate_tmp is repeated. (inner_product should be zero) eigenstates_array += [eigenstate_tmp] energies += [eigenvalues[i]] if H.spatial_ndim == 1: type = "TwoIdenticalParticles1D" elif H.spatial_ndim == 2: type = "TwoIdenticalParticles2D" eigenstates = Eigenstates(energies, eigenstates_array, H.extent, H.N, type) return eigenstates
py
1a2ea70915788a9b5c94a3368918c20c33a3fba8
from .Helper import StudyManage,StageControl from .Helper.StageControl import CStageControl from .DataStruct.DataSet import CFlowDict
py
1a2ea73f55442ae5ef4c6061276deb17c954c9ee
#!/usr/bin/env python from distutils.core import setup from catkin_pkg.python_setup import generate_distutils_setup d = generate_distutils_setup( ## don't do this unless you want a globally visible script # scripts=['bin/myscript'], packages=['rqt_smach'], package_dir={'': 'src'}, scripts=['scripts/rqt_smach'] ) setup(**d)
py
1a2ea7930e307d1b563ec44c435e5d27b999a6bf
""" Copyright 2018 Google LLC Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ """ Activation generator helper classes for TCAV""" ''' The following class was modified to enable numeric class labels ''' from abc import ABCMeta from abc import abstractmethod from multiprocessing import dummy as multiprocessing import os.path import numpy as np import PIL.Image import tensorflow as tf class ActivationGeneratorInterface(object): """Interface for an activation generator for a model""" __metaclass__ = ABCMeta @abstractmethod def process_and_load_activations(self, bottleneck_names, concepts): pass @abstractmethod def get_model(self): pass class ActivationGeneratorBase(ActivationGeneratorInterface): """Basic abstract activation generator for a model""" def __init__(self, model, acts_dir, max_examples=500): self.model = model self.acts_dir = acts_dir self.max_examples = max_examples def get_model(self): return self.model @abstractmethod def get_examples_for_concept(self, concept): pass def get_activations_for_concept(self, concept, bottleneck): examples = self.get_examples_for_concept(concept) return self.get_activations_for_examples(examples, bottleneck) def get_activations_for_examples(self, examples, bottleneck): acts = self.model.run_examples(examples, bottleneck) return self.model.reshape_activations(acts).squeeze() def process_and_load_activations(self, bottleneck_names, concepts): acts = {} if self.acts_dir and not tf.gfile.Exists(self.acts_dir): tf.gfile.MakeDirs(self.acts_dir) for concept in concepts: if concept not in acts: acts[concept] = {} for bottleneck_name in bottleneck_names: acts_path = os.path.join(self.acts_dir, 'acts_{}_{}'.format( concept, bottleneck_name)) if self.acts_dir else None if acts_path and tf.gfile.Exists(acts_path): with tf.gfile.Open(acts_path, 'rb') as f: acts[concept][bottleneck_name] = np.load(f).squeeze() tf.logging.info('Loaded {} shape {}'.format( acts_path, acts[concept][bottleneck_name].shape)) else: acts[concept][bottleneck_name] = self.get_activations_for_concept( concept, bottleneck_name) if acts_path: tf.logging.info('{} does not exist, Making one...'.format( acts_path)) with tf.gfile.Open(acts_path, 'wb') as f: np.save(f, acts[concept][bottleneck_name], allow_pickle=False) return acts class ImageActivationGenerator(ActivationGeneratorBase): """Activation generator for a basic image model""" def __init__(self, model, source_dir, acts_dir, max_examples=10): self.source_dir = source_dir super(ImageActivationGenerator, self).__init__( model, acts_dir, max_examples) def get_examples_for_concept(self, concept): concept_dir = os.path.join(self.source_dir, concept) print(concept_dir, concept) img_paths = [os.path.join(concept_dir, d) for d in tf.gfile.ListDirectory(concept_dir)] imgs = self.load_images_from_files(img_paths, self.max_examples, shape=self.model.get_image_shape()[:2]) return imgs def load_image_from_file(self, filename, shape): """Given a filename, try to open the file. If failed, return None. Args: filename: location of the image file shape: the shape of the image file to be scaled Returns: the image if succeeds, None if fails. Rasies: exception if the image was not the right shape. """ if not tf.gfile.Exists(filename): tf.logging.error('Cannot find file: {}'.format(filename)) return None try: img = np.array(PIL.Image.open(tf.gfile.Open(filename, 'rb')).resize( shape, PIL.Image.BILINEAR)) # Normalize pixel values to between 0 and 1. img = np.float32(img) / 255.0 if not (len(img.shape) == 3 and img.shape[2] == 3): return None else: return img except Exception as e: tf.logging.info(e) return None return img def load_images_from_files(self, filenames, max_imgs=500, do_shuffle=True, run_parallel=True, shape=(299, 299), num_workers=100): """Return image arrays from filenames. Args: filenames: locations of image files. max_imgs: maximum number of images from filenames. do_shuffle: before getting max_imgs files, shuffle the names or not run_parallel: get images in parallel or not shape: desired shape of the image num_workers: number of workers in parallelization. Returns: image arrays """ imgs = [] # First shuffle a copy of the filenames. filenames = filenames[:] if do_shuffle: np.random.shuffle(filenames) if run_parallel: pool = multiprocessing.Pool(num_workers) imgs = pool.map( lambda filename: self.load_image_from_file(filename, shape), filenames[:max_imgs]) imgs = [img for img in imgs if img is not None] else: for filename in filenames: img = self.load_image_from_file(filename, shape) if img is not None: imgs.append(img) if len(imgs) >= max_imgs: break return np.array(imgs)
py
1a2ea9756620b796158af7da3296c4fe6127c95d
import base64 import logging from urllib import urlencode from dateutil.tz import tzutc import httplib2 from sharpy.exceptions import AccessDenied from sharpy.exceptions import BadRequest from sharpy.exceptions import CheddarError from sharpy.exceptions import CheddarFailure from sharpy.exceptions import NaughtyGateway from sharpy.exceptions import NotFound from sharpy.exceptions import PreconditionFailed from sharpy.exceptions import UnprocessableEntity client_log = logging.getLogger('SharpyClient') class Client(object): default_endpoint = 'https://cheddargetter.com/xml' def __init__(self, username, password, product_code, cache=None, timeout=None, endpoint=None): ''' username - Your cheddargetter username (probably an email address) password - Your cheddargetter password product_code - The product code for the product you want to work with cache - A file system path or an object which implements the httplib2 cache API (optional) timeout - Socket level timout in seconds (optional) endpoint - An alternate API endpoint (optional) ''' self.username = username self.password = password self.product_code = product_code self.endpoint = endpoint or self.default_endpoint self.cache = cache self.timeout = timeout super(Client, self).__init__() def build_url(self, path, params=None): ''' Constructs the url for a cheddar API resource ''' url = u'%s/%s/productCode/%s' % ( self.endpoint, path, self.product_code, ) if params: for key, value in params.items(): url = u'%s/%s/%s' % (url, key, value) return url def format_datetime(self, to_format): if to_format == 'now': str_dt = to_format else: if getattr(to_format, 'tzinfo', None) is not None: utc_value = to_format.astimezone(tzutc()) else: utc_value = to_format str_dt = utc_value.strftime('%Y-%m-%dT%H:%M:%S+00:00') return str_dt def format_date(self, to_format): if to_format == 'now': str_dt = to_format else: if getattr(to_format, 'tzinfo', None) is not None: utc_value = to_format.astimezone(tzutc()) else: utc_value = to_format str_dt = utc_value.strftime('%Y-%m-%d') return str_dt def make_request(self, path, params=None, data=None, method=None): ''' Makes a request to the cheddar api using the authentication and configuration settings available. ''' # Setup values url = self.build_url(path, params) client_log.debug('Requesting: %s' % url) method = method or 'GET' body = None headers = {} cleaned_data = None if data: method = 'POST' body = urlencode(data) headers = { 'content-type': 'application/x-www-form-urlencoded; charset=UTF-8', } # Clean credit card info from when the request gets logged # (remove ccv and only show last four of card num) cleaned_data = data.copy() if 'subscription[ccCardCode]' in cleaned_data: del cleaned_data['subscription[ccCardCode]'] if 'subscription[ccNumber]' in cleaned_data: ccNum = cleaned_data['subscription[ccNumber]'] cleaned_data['subscription[ccNumber]'] = ccNum[-4:] client_log.debug('Request Method: %s' % method) client_log.debug('Request Body (Cleaned Data): %s' % cleaned_data) # Setup http client h = httplib2.Http(cache=self.cache, timeout=self.timeout) # Skip the normal http client behavior and send auth headers # immediately to save an http request. headers['Authorization'] = "Basic %s" % base64.standard_b64encode( self.username + ':' + self.password).strip() # Make request response, content = h.request(url, method, body=body, headers=headers) status = response.status client_log.debug('Response Status: %d' % status) client_log.debug('Response Content: %s' % content) if status != 200 and status != 302: exception_class = CheddarError if status == 401: exception_class = AccessDenied elif status == 400: exception_class = BadRequest elif status == 404: exception_class = NotFound elif status == 412: exception_class = PreconditionFailed elif status == 500: exception_class = CheddarFailure elif status == 502: exception_class = NaughtyGateway elif status == 422: exception_class = UnprocessableEntity raise exception_class(response, content) response.content = content return response
py
1a2eaa285371140e1b57d39a53c34529b0e71209
from fastbook import * from fastai.vision.widgets import * def create_dataloader(path): print(" Creating dataloader.. ") db = DataBlock( blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, splitter=RandomSplitter(valid_pct=0.2, seed=42), get_y=parent_label, item_tfms=Resize(128)) db = db.new( item_tfms=RandomResizedCrop(224, min_scale=0.5), batch_tfms=aug_transforms()) dls = db.dataloaders(path) return dls def train_model(dls , save_model_name = "animals_prediction.pkl"): print(" Training Model .. ") learn = cnn_learner(dls, resnet18, metrics=error_rate) learn.fine_tune(4) learn.export(save_model_name) return learn if __name__ == "__main__": path = Path("DATA") animals_path = (path/"animals") dls = create_dataloader(animals_path) model = train_model(dls ,"animals_prediction.pkl")
py
1a2eaa6573349bf9471d42646a7167c9f0a978c9
# -*- coding: utf-8 -*- import argparse def parse_opts(): parser = argparse.ArgumentParser() parser.add_argument( '-videos_path', nargs='+', type=str, help='视频所在文件夹') parser.add_argument( '-target_path', nargs='+', type=str, help='要写入的文件夹') parser.add_argument( '-cut_start', nargs='+', default=0, type=int, help='从第几帧开始截取') parser.add_argument( '-cut_end', nargs='+', default=0, type=int, help='截取到第几帧') args = parser.parse_args() return args

No dataset card yet

Downloads last month
0