image
imagewidth (px)
256
256
audio_file
stringlengths
19
22
slice
int16
0
0
./-gunr91dUe8_10.mp3
0
./hz0zGSZu6GQ_57.mp3
0
./0bLxAtJqpLQ_55.mp3
0
./sCjpbjCH5L0_17.mp3
0
./eYVaV9ujHdE_0.mp3
0
./Ccs2rt0oSzQ_20.mp3
0
./JgpPk4ooo7E_0.mp3
0
./QbzkwLWK-Ps_5.mp3
0
./PEt8BJyez0g_56.mp3
0
./QuytQvycLag_28.mp3
0
./rhg0cJPS_gU_0.mp3
0
./QbzkwLWK-Ps_140.mp3
0
./iclcv3-_L-w_0.mp3
0
./ZoAATtUmvUs_0.mp3
0
./Pyv9O4fmspw_7.mp3
0
./VE8ENpivjsw_461.mp3
0
./l9JzeIRm5Xw_8.mp3
0
./A9Ik81plN_Q_12.mp3
0
./ZOk9F5LLabo_143.mp3
0
./oVDfyc2lh4Q_74.mp3
0
./L1AudFeFgzs_10.mp3
0
./DVDCNmdi7QI_130.mp3
0
./rMEMaAXp-6E_0.mp3
0
./kM-Rt-FKX9M_0.mp3
0
./GQ5fGw3B-lQ_12.mp3
0
./BM8F0OOBdcE_23.mp3
0
./j9B0mImSbbY_169.mp3
0
./Gynkzibz8UI_1.mp3
0
./rVwSN586T_w_33.mp3
0
./78smH_d26KM_10.mp3
0
./s05jcrJw0as_0.mp3
0
./IGVZOLV9SPo_35.mp3
0
./A3UlqskQCOs_5.mp3
0
./i0g3wWeH6Pg_30.mp3
0
./1zh-0eupfNw_12.mp3
0
./v9sWk5CWIUI_6.mp3
0
./KQ78x11F_GE_80.mp3
0
./KuQoQgL63Xo_171.mp3
0
./h9Jk7_NDCuw_5.mp3
0
./9nwFVIdXATk_199.mp3
0
./j7QWJXXqiOc_33.mp3
0
./pifZig8LsnU_8.mp3
0
./_TveobyX-ps_1.mp3
0
./NEscJWErZ0I_48.mp3
0
./bBp1TwfPLOI_5.mp3
0
./pLsmYrCbqOU_0.mp3
0
./Lt0wup0EAmg_0.mp3
0
./wUnOislqKO0_73.mp3
0
./IJfBwmZ0qwU_44.mp3
0
./-s4zRw16tMA_0.mp3
0
./Zs8f9exblxo_0.mp3
0
./cLEPitPNms8_29.mp3
0
./oSaUkLNyKgI_215.mp3
0
./_Yhyp-_hX2s_36.mp3
0
./xqNRWSCJAGk_15.mp3
0
./KhaUnHJjS8A_16.mp3
0
./SAJNz9kZttI_23.mp3
0
./Sxhh_rkMvP4_0.mp3
0
./JS91p-vmSf0_11.mp3
0
./FBv9hQwoB-s_0.mp3
0
./z30oQIEzzvo_0.mp3
0
./Fvmlul95z8U_5.mp3
0
./iQa-EL5jI6I_56.mp3
0
./KCgYPlOuvgM_1.mp3
0
./kz1Ih2gBbfU_0.mp3
0
./UqH7YUG0A-I_77.mp3
0
./LwUEb8Q-qAA_240.mp3
0
./o6n0DxNQBh0_40.mp3
0
./b-ob6VN6qy8_101.mp3
0
./S3h5dvdpknk_0.mp3
0
./SOISix8JfIM_11.mp3
0
./NfJpDPZd2GY_20.mp3
0
./ez5gB554KIg_1.mp3
0
./695l9bmiA2o_0.mp3
0
./o0ADLHIlopE_186.mp3
0
./zT4MBrtKPUE_0.mp3
0
./LrjM8Fi7J58_7.mp3
0
./6D1nK7q2i8I_10.mp3
0
./dMGY8A1uHSM_5.mp3
0
./twUEZSgwpOw_224.mp3
0
./yWUaHpq9EUQ_106.mp3
0
./GAAWE8L0crg_76.mp3
0
./I-iFsxSNN2c_29.mp3
0
./9fuDhwGfppE_0.mp3
0
./psuRGfAaju4_3.mp3
0
./YO4Mz4oJTqs_92.mp3
0
./4t_lFXZKah4_1.mp3
0
./zKVq-P3z5Vg_244.mp3
0
./V1vjOLZ0s8g_0.mp3
0
./owUgop9PJ9s_10.mp3
0
./umUHR1JlT_c_107.mp3
0
./ZyswjkZJugI_10.mp3
0
./A3UlqskQCOs_42.mp3
0
./N3zUBUqAOQ8_40.mp3
0
./eJO5HU_7_1w_3.mp3
0
./MBdVXkSdhwU_15.mp3
0
./EIYymBQ05S8_1.mp3
0
./1ddC4OCYEcc_200.mp3
0
./rceRAelUtzA_0.mp3
0
./dh7N-7Hv2so_5.mp3
0

30,000 256x256 mel spectrograms of 5 second samples that have been used in music, sourced from WhoSampled and YouTube. The code to convert from audio to spectrogram and vice versa can be found in https://github.com/teticio/audio-diffusion along with scripts to train and run inference using De-noising Diffusion Probabilistic Models.

x_res = 256
y_res = 256
sample_rate = 22050
n_fft = 2048
hop_length = 512
Downloads last month
5
Edit dataset card

Models trained or fine-tuned on teticio/audio-diffusion-breaks-256