Datasets:

ArXiv:
License:
File size: 6,365 Bytes
267a466
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d09a36
267a466
 
 
 
 
 
 
 
0d4bcf5
267a466
 
 
 
0d4bcf5
 
 
 
267a466
 
 
 
 
0d4bcf5
267a466
 
 
 
 
 
 
 
 
0d4bcf5
267a466
 
0d4bcf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
267a466
 
 
 
0d4bcf5
267a466
 
 
 
 
 
 
8d09a36
dd27e7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
267a466
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
import datasets


_DESCRIPTION = """\
This corpus is an attempt to recreate the dataset used for training XLM-R. This corpus comprises of monolingual data for 100+ languages and also includes data for romanized languages (indicated by *_rom). This was constructed using the urls and paragraph indices provided by the CC-Net repository by processing January-December 2018 Commoncrawl snapshots. Each file comprises of documents separated by double-newlines and paragraphs within the same document separated by a newline. The data is generated using the open source CC-Net repository. No claims of intellectual property are made on the work of preparation of the corpus.
"""
_HOMEPAGE_URL = "https://data.statmt.org/cc-100/"
_CITATION = """\
@inproceedings{conneau-etal-2020-unsupervised,
    title = "Unsupervised Cross-lingual Representation Learning at Scale",
    author = "Conneau, Alexis  and
      Khandelwal, Kartikay  and
      Goyal, Naman  and
      Chaudhary, Vishrav  and
      Wenzek, Guillaume  and
      Guzm{\\'a}n, Francisco  and
      Grave, Edouard  and
      Ott, Myle  and
      Zettlemoyer, Luke  and
      Stoyanov, Veselin",
    editor = "Jurafsky, Dan  and
      Chai, Joyce  and
      Schluter, Natalie  and
      Tetreault, Joel",
    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.acl-main.747",
    doi = "10.18653/v1/2020.acl-main.747",
    pages = "8440--8451",
}
@inproceedings{wenzek-etal-2020-ccnet,
    title = "{CCN}et: Extracting High Quality Monolingual Datasets from Web Crawl Data",
    author = "Wenzek, Guillaume  and
      Lachaux, Marie-Anne  and
      Conneau, Alexis  and
      Chaudhary, Vishrav  and
      Guzm{\\'a}n, Francisco  and
      Joulin, Armand  and
      Grave, Edouard",
    editor = "Calzolari, Nicoletta  and
      B{\\'e}chet, Fr{\\'e}d{\\'e}ric  and
      Blache, Philippe  and
      Choukri, Khalid  and
      Cieri, Christopher  and
      Declerck, Thierry  and
      Goggi, Sara  and
      Isahara, Hitoshi  and
      Maegaard, Bente  and
      Mariani, Joseph  and
      Mazo, H{\\'e}l{\\`e}ne  and
      Moreno, Asuncion  and
      Odijk, Jan  and
      Piperidis, Stelios",
    booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
    month = may,
    year = "2020",
    address = "Marseille, France",
    publisher = "European Language Resources Association",
    url = "https://aclanthology.org/2020.lrec-1.494",
    pages = "4003--4012",
    language = "English",
    ISBN = "979-10-95546-34-4",
}
"""

_VERSION = "1.0.0"
_BASE_URL = "https://data.statmt.org/cc-100/{}.txt.xz"
_LANGUAGES = [
    "af",
    "am",
    "ar",
    "as",
    "az",
    "be",
    "bg",
    "bn",
    "bn_rom",
    "br",
    "bs",
    "ca",
    "cs",
    "cy",
    "da",
    "de",
    "el",
    "en",
    "eo",
    "es",
    "et",
    "eu",
    "fa",
    "ff",
    "fi",
    "fr",
    "fy",
    "ga",
    "gd",
    "gl",
    "gn",
    "gu",
    "ha",
    "he",
    "hi",
    "hi_rom",
    "hr",
    "ht",
    "hu",
    "hy",
    "id",
    "ig",
    "is",
    "it",
    "ja",
    "jv",
    "ka",
    "kk",
    "km",
    "kn",
    "ko",
    "ku",
    "ky",
    "la",
    "lg",
    "li",
    "ln",
    "lo",
    "lt",
    "lv",
    "mg",
    "mk",
    "ml",
    "mn",
    "mr",
    "ms",
    "my",
    "my_zaw",
    "ne",
    "nl",
    "no",
    "ns",
    "om",
    "or",
    "pa",
    "pl",
    "ps",
    "pt",
    "qu",
    "rm",
    "ro",
    "ru",
    "sa",
    "sc",
    "sd",
    "si",
    "sk",
    "sl",
    "so",
    "sq",
    "sr",
    "ss",
    "su",
    "sv",
    "sw",
    "ta",
    "ta_rom",
    "te",
    "te_rom",
    "th",
    "tl",
    "tn",
    "tr",
    "ug",
    "uk",
    "ur",
    "ur_rom",
    "uz",
    "vi",
    "wo",
    "xh",
    "yi",
    "yo",
    "zh-Hans",
    "zh-Hant",
    "zu",
]


class Cc100Config(datasets.BuilderConfig):
    def __init__(self, *args, lang=None, **kwargs):
        super().__init__(
            *args,
            name=f"{lang}",
            **kwargs,
        )
        self.lang = lang


class Cc100(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        Cc100Config(
            lang=lang,
            description=f"Language: {lang}",
            version=datasets.Version(_VERSION),
        )
        for lang in _LANGUAGES
    ]
    BUILDER_CONFIG_CLASS = Cc100Config

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "text": datasets.Value("string"),
                },
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE_URL,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        def _base_url(lang):
            return _BASE_URL.format(lang)

        download_url = _base_url(self.config.lang)
        path = dl_manager.download_and_extract(download_url)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"datapath": path},
            )
        ]

    def _generate_examples(self, datapath):
        with open(datapath, encoding="utf-8") as f:
            for sentence_counter, row in enumerate(f):
                result = (
                    sentence_counter,
                    {
                        "id": str(sentence_counter),
                        "text": row,
                    },
                )
                yield result