Datasets:
x
float64 -0.05
1.12
| z
float64 -0.48
0.12
| y
float64 -0.05
1.25
|
---|---|---|
0.725996 | -0 | 0.584783 |
0.694579 | -0.005173 | 0.543811 |
0.679865 | -0.007446 | 0.485497 |
0.68005 | -0.012302 | 0.439989 |
0.685417 | -0.015466 | 0.40299 |
0.710258 | 0.00827 | 0.451271 |
0.705671 | -0.009625 | 0.417089 |
0.695427 | -0.021092 | 0.451636 |
0.690624 | -0.025535 | 0.484562 |
0.732202 | 0.003625 | 0.461032 |
0.725635 | -0.014751 | 0.430095 |
0.712115 | -0.02068 | 0.472678 |
0.706565 | -0.019607 | 0.505256 |
0.753729 | -0.004224 | 0.476039 |
0.744588 | -0.023086 | 0.446436 |
0.729545 | -0.019422 | 0.488876 |
0.723348 | -0.01105 | 0.520558 |
0.775729 | -0.012573 | 0.496562 |
0.761608 | -0.024972 | 0.469086 |
0.746473 | -0.020008 | 0.497516 |
0.7403 | -0.012237 | 0.522154 |
0.232567 | -0 | 0.776831 |
0.303858 | -0.012805 | 0.744157 |
0.36192 | -0.015728 | 0.668315 |
0.403867 | -0.022862 | 0.600584 |
0.426222 | -0.026115 | 0.535561 |
0.367215 | 0.010112 | 0.587244 |
0.389544 | -0.019432 | 0.510608 |
0.367428 | -0.037172 | 0.567074 |
0.349123 | -0.042712 | 0.612149 |
0.328028 | 0.005328 | 0.56641 |
0.350575 | -0.024268 | 0.49476 |
0.328945 | -0.032842 | 0.569112 |
0.31438 | -0.03005 | 0.612803 |
0.284669 | -0.004927 | 0.555582 |
0.307553 | -0.031171 | 0.478077 |
0.296201 | -0.021598 | 0.551461 |
0.284797 | -0.006419 | 0.59943 |
0.237716 | -0.017212 | 0.551285 |
0.258431 | -0.032336 | 0.488451 |
0.262178 | -0.021433 | 0.534099 |
0.260278 | -0.007045 | 0.571513 |
0.795573 | -0.000001 | 0.714432 |
0.746347 | -0.019566 | 0.676495 |
0.710034 | -0.027464 | 0.597574 |
0.688764 | -0.036337 | 0.532768 |
0.673725 | -0.041591 | 0.478132 |
0.716375 | -0.001545 | 0.524571 |
0.718205 | -0.033593 | 0.475875 |
0.735165 | -0.053951 | 0.52798 |
0.74354 | -0.061258 | 0.580836 |
0.754786 | -0.002275 | 0.522249 |
0.76572 | -0.039267 | 0.496525 |
0.774301 | -0.053681 | 0.570085 |
0.77228 | -0.052907 | 0.630367 |
0.79118 | -0.007935 | 0.528775 |
0.799518 | -0.044252 | 0.520643 |
0.799867 | -0.043679 | 0.593472 |
0.792242 | -0.031741 | 0.647531 |
0.824744 | -0.014919 | 0.544011 |
0.830504 | -0.040379 | 0.534326 |
0.826018 | -0.036876 | 0.589423 |
0.8166 | -0.025645 | 0.631012 |
0.547774 | -0 | 0.632307 |
0.620866 | -0.02196 | 0.59846 |
0.682781 | -0.027547 | 0.507354 |
0.707148 | -0.033566 | 0.41943 |
0.703045 | -0.034223 | 0.346684 |
0.638546 | -0.011298 | 0.41608 |
0.663584 | -0.045152 | 0.338706 |
0.663973 | -0.05493 | 0.419405 |
0.648721 | -0.052547 | 0.470096 |
0.59584 | -0.012993 | 0.412234 |
0.622626 | -0.049507 | 0.341256 |
0.621869 | -0.051314 | 0.443287 |
0.603683 | -0.041742 | 0.488802 |
0.550722 | -0.020142 | 0.417334 |
0.57713 | -0.06023 | 0.345502 |
0.582032 | -0.042358 | 0.450567 |
0.568378 | -0.017718 | 0.500722 |
0.498227 | -0.028554 | 0.42967 |
0.531726 | -0.053697 | 0.366797 |
0.543618 | -0.036195 | 0.437881 |
0.534437 | -0.014677 | 0.481066 |
0.338393 | -0 | 0.708995 |
0.38298 | -0.014568 | 0.65566 |
0.406663 | -0.019256 | 0.568827 |
0.417065 | -0.025315 | 0.496601 |
0.405295 | -0.027833 | 0.438597 |
0.373547 | -0.003774 | 0.508295 |
0.369752 | -0.033928 | 0.443423 |
0.377964 | -0.048165 | 0.500561 |
0.381473 | -0.050388 | 0.5481 |
0.337586 | -0.007293 | 0.519939 |
0.332532 | -0.039171 | 0.445148 |
0.348351 | -0.044936 | 0.516165 |
0.356532 | -0.038859 | 0.565154 |
0.301441 | -0.015132 | 0.542253 |
0.297664 | -0.049138 | 0.48227 |
0.321824 | -0.040109 | 0.55501 |
ASLNow!
ASLNow! is a web app designed to make learning ASL fingerspelling easy and fun! You can try it live at asl-now.vercel.app.
Demo: https://www.youtube.com/watch?v=Wi5tAxVasq8
Dataset
This dataset, used to train the fingerspelling model is licensed under the MIT License. It will be updated frequently as more data is collected.
The dataset is collected from multiple participants told to sign ASL letters into a camera and detecting hand landmarks using the Mediapipe Web Hand Landmarker Solution. The landmarks are then parsed into a JSON format, and stored in the folder of the class they belong to.
Format
21 hand landmarks, each composed of x
, y
and z
coordinates. The x
and y
coordinates are normalized
to [0.0, 1.0]
by the
image width and height, respectively. The z
coordinate represents the landmark depth, with the depth at the wrist
being
the origin. The smaller the value, the closer the landmark is to the camera. The magnitude of z
uses roughly the same
scale as x.
From: https://developers.google.com/mediapipe/solutions/vision/hand_landmarker
Example (./B/1d20c568-8641-40b6-9c4a-2bff97ab6b49.json
):
[
{
"x": 0.795294463634491,
"y": 0.8062881827354431,
"z": 3.8308681382659415e-7
},
{
"x": 0.7690186500549316,
"y": 0.751120924949646,
"z": -0.019963227212429047
},
...
{
"x": 0.8564801812171936,
"y": 0.5965726375579834,
"z": 0.01904376409947872
},
{
"x": 0.8578274846076965,
"y": 0.5701698064804077,
"z": 0.017703533172607422
}
]
- Downloads last month
- 54