File size: 3,605 Bytes
6a5e475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
322a677
 
 
eb1d4aa
322a677
b71ab23
eb1d4aa
 
6a5e475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2aa6c17
6a5e475
2aa6c17
 
6a5e475
 
 
 
 
 
 
 
 
cc9ae4a
322a677
6a5e475
 
 
 
 
322a677
6a5e475
 
 
 
 
 
 
 
 
 
b9b1542
6a5e475
484f2ea
9e6d05a
484f2ea
9e6d05a
6a5e475
484f2ea
2aa6c17
484f2ea
 
 
6a5e475
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# coding=utf-8
# Source: https://github.com/huggingface/datasets/blob/master/templates/new_dataset_script.py

"""ELRC-Medical-V2 : European parallel corpus for healthcare machine translation"""

import os
import csv
import datasets
from tqdm import tqdm

logger = datasets.logging.get_logger(__name__)

_CITATION = """
@inproceedings{losch-etal-2018-european,
    title = "European Language Resource Coordination: Collecting Language Resources for Public Sector Multilingual Information Management",
    author = {L{\"o}sch, Andrea  and
      Mapelli, Val{\'e}rie  and
      Piperidis, Stelios  and
      Vasi{\c{l}}jevs, Andrejs  and
      Smal, Lilli  and
      Declerck, Thierry  and
      Schnur, Eileen  and
      Choukri, Khalid  and
      van Genabith, Josef},
    booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)",
    month = may,
    year = "2018",
    address = "Miyazaki, Japan",
    publisher = "European Language Resources Association (ELRA)",
    url = "https://aclanthology.org/L18-1213",
}
"""

_LANGUAGE_PAIRS = ["en-" + lang for lang in ["bg", "cs", "da", "de", "el", "es", "et", "fi", "fr", "ga", "hr", "hu", "it", "lt", "lv", "mt", "nl", "pl", "pt", "ro", "sk", "sl", "sv"]]

_LICENSE = """
This work is licensed under a <a rel="license" href="https://elrc-share.eu/static/metashare/licences/CC-BY-4.0.pdf">Attribution 4.0 International (CC BY 4.0) License</a>.
"""

# _URLS = {
#     lang : "https://huggingface.co/datasets/qanastek/ELRC-Medical-V2/raw/main/csv/" + lang + ".csv" for lang in _LANGUAGE_PAIRS
# }

_URL = "https://raw.githubusercontent.com/qanastek/ELRC-Medical-V2/main/csv_corpus/"

# _URL = "https://raw.githubusercontent.com/qanastek/ELRC-Medical-V2/main/csv_corpus/"

_DESCRIPTION = "No description"

class ELRC_Medical_V2(datasets.GeneratorBasedBuilder):
    """ELRC-Medical-V2 dataset."""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name=name, version=datasets.Version("2.0.0"), description="The ELRC-Medical-V2 corpora") for name in _LANGUAGE_PAIRS
    ]

    DEFAULT_CONFIG_NAME = "en-fr"

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features({
                "doc_id": datasets.Value("int32"),
                "lang": datasets.Value("string"),
                "source_text": datasets.Value("large_string"),
                "target_text": datasets.Value("large_string"),
            }),
            supervised_keys=None,
            homepage="https://github.com/qanastek/ELRC-Medical-V2/",
            citation=_CITATION,
            license=_LICENSE,
        )

    def _split_generators(self, dl_manager):

        # Download the CSV
        data_dir = dl_manager.download(_URL)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_dir + self.config.name + ".csv",
                    "split": "train",
                }
            ),
        ]
        

    def _generate_examples(self, filepath, split):

        logger.info("⏳ Generating examples from = %s", filepath)

        with open(filepath, encoding="utf-8") as f:

            for id_, row in enumerate(csv.reader(f, delimiter=',')):

                if id_ == 0:
                    continue

                yield id_, {
                    "doc_id": int(row[0]),
                    "lang": str(row[1]),
                    "source_text": str(row[2]),
                    "target_text": str(row[3])
                }