Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
paper_url
stringlengths
36
81
paper_title
stringlengths
1
242
paper_arxiv_id
stringlengths
9
16
paper_url_abs
stringlengths
18
314
paper_url_pdf
stringlengths
21
935
repo_url
stringlengths
26
200
is_official
bool
2 classes
mentioned_in_paper
bool
2 classes
mentioned_in_github
bool
2 classes
framework
stringclasses
9 values
https://paperswithcode.com/paper/odyssey-a-public-gpu-based-code-for-general
Odyssey: A Public GPU-Based Code for General-Relativistic Radiative Transfer in Kerr Spacetime
1601.02063
https://arxiv.org/abs/1601.02063v2
https://arxiv.org/pdf/1601.02063v2.pdf
https://github.com/LeonGeiger/Kerr
false
false
true
none
https://paperswithcode.com/paper/efficient-leave-one-out-cross-validation-for
Efficient leave-one-out cross-validation for Bayesian non-factorized normal and Student-t models
1810.10559
https://arxiv.org/abs/1810.10559v5
https://arxiv.org/pdf/1810.10559v5.pdf
https://github.com/paul-buerkner/psis-non-factorized-paper
true
true
false
none
https://paperswithcode.com/paper/automatic-post-editing-of-machine-translation
Automatic Post-Editing of Machine Translation: A Neural Programmer-Interpreter Approach
null
https://aclanthology.org/D18-1341
https://aclanthology.org/D18-1341.pdf
https://github.com/trangvu/ape-npi
false
false
false
tf
https://paperswithcode.com/paper/attngan-fine-grained-text-to-image-generation
AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks
1711.10485
http://arxiv.org/abs/1711.10485v1
http://arxiv.org/pdf/1711.10485v1.pdf
https://github.com/bprabhakar/text-to-image
false
false
false
pytorch
https://paperswithcode.com/paper/photo-realistic-single-image-super-resolution
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
1609.04802
http://arxiv.org/abs/1609.04802v5
http://arxiv.org/pdf/1609.04802v5.pdf
https://github.com/2023-MindSpore-1/ms-code-210/tree/main/CSNL
false
false
false
mindspore
https://paperswithcode.com/paper/distilling-interpretable-models-into-human
Distilling Interpretable Models into Human-Readable Code
2101.08393
https://arxiv.org/abs/2101.08393v2
https://arxiv.org/pdf/2101.08393v2.pdf
https://github.com/google/pwlfit
true
true
false
none
https://paperswithcode.com/paper/wide-residual-networks
Wide Residual Networks
1605.07146
http://arxiv.org/abs/1605.07146v4
http://arxiv.org/pdf/1605.07146v4.pdf
https://github.com/epfl-ml-reproducers/subspace-attack-reproduction
false
false
true
pytorch
https://paperswithcode.com/paper/show-and-tell-lessons-learned-from-the-2015
Show and Tell: Lessons learned from the 2015 MSCOCO Image Captioning Challenge
1609.06647
http://arxiv.org/abs/1609.06647v1
http://arxiv.org/pdf/1609.06647v1.pdf
https://github.com/HughKu/Im2txt
false
false
true
tf
https://paperswithcode.com/paper/a-wavenet-for-speech-denoising
A Wavenet for Speech Denoising
1706.07162
http://arxiv.org/abs/1706.07162v3
http://arxiv.org/pdf/1706.07162v3.pdf
https://github.com/francesclluis/source-separation-wavenet
false
false
true
tf
https://paperswithcode.com/paper/stackgan-realistic-image-synthesis-with
StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks
1710.10916
http://arxiv.org/abs/1710.10916v3
http://arxiv.org/pdf/1710.10916v3.pdf
https://github.com/Maymaher/StackGANv2
false
false
true
pytorch
https://paperswithcode.com/paper/towards-k-means-friendly-spaces-simultaneous
Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering
1610.04794
http://arxiv.org/abs/1610.04794v2
http://arxiv.org/pdf/1610.04794v2.pdf
https://github.com/boyangumn/DCN
true
true
true
none
https://paperswithcode.com/paper/simulaqron-a-simulator-for-developing-quantum
SimulaQron - A simulator for developing quantum internet software
1712.08032
http://arxiv.org/abs/1712.08032v2
http://arxiv.org/pdf/1712.08032v2.pdf
https://github.com/quantumprotocolzoo/protocols
false
false
true
none
https://paperswithcode.com/paper/recipenlg-a-cooking-recipes-dataset-for-semi
RecipeNLG: A Cooking Recipes Dataset for Semi-Structured Text Generation
null
https://aclanthology.org/2020.inlg-1.4
https://aclanthology.org/2020.inlg-1.4.pdf
https://github.com/Glorf/recipenlg
false
false
false
pytorch
https://paperswithcode.com/paper/online-deep-learning-learning-deep-neural
Online Deep Learning: Learning Deep Neural Networks on the Fly
1711.03705
http://arxiv.org/abs/1711.03705v1
http://arxiv.org/pdf/1711.03705v1.pdf
https://github.com/LIBOL/ODL
false
false
true
pytorch
https://paperswithcode.com/paper/model-rubik-s-cube-twisting-resolution-depth
Model Rubik's Cube: Twisting Resolution, Depth and Width for TinyNets
2010.14819
https://arxiv.org/abs/2010.14819v2
https://arxiv.org/pdf/2010.14819v2.pdf
https://github.com/leondgarse/keras_cv_attention_models/tree/main/keras_cv_attention_models/mobilenetv3_family
false
false
false
tf
https://paperswithcode.com/paper/190600133
ArcticNet: A Deep Learning Solution to Classify Arctic Wetlands
1906.00133
https://arxiv.org/abs/1906.00133v1
https://arxiv.org/pdf/1906.00133v1.pdf
https://github.com/geekJZY/arcticnet
true
true
false
pytorch
https://paperswithcode.com/paper/multi-label-image-classification-via
Multi-Label Image Classification via Knowledge Distillation from Weakly-Supervised Detection
1809.05884
http://arxiv.org/abs/1809.05884v2
http://arxiv.org/pdf/1809.05884v2.pdf
https://github.com/Yochengliu/MLIC-KD-WSD
false
false
true
none
https://paperswithcode.com/paper/few-shot-learning-with-graph-neural-networks
Few-Shot Learning with Graph Neural Networks
1711.04043
http://arxiv.org/abs/1711.04043v3
http://arxiv.org/pdf/1711.04043v3.pdf
https://github.com/HoganZhang/few-shot-gnn
false
false
true
pytorch
https://paperswithcode.com/paper/generative-adversarial-networks
Generative Adversarial Networks
1406.2661
https://arxiv.org/abs/1406.2661v1
https://arxiv.org/pdf/1406.2661v1.pdf
https://github.com/syahdeini/gan
false
false
true
tf
https://paperswithcode.com/paper/mastering-chess-and-shogi-by-self-play-with-a
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm
1712.01815
http://arxiv.org/abs/1712.01815v1
http://arxiv.org/pdf/1712.01815v1.pdf
https://github.com/Neo-The1/ThinkingTicTacToe
false
false
true
tf
https://paperswithcode.com/paper/focal-loss-for-dense-object-detection
Focal Loss for Dense Object Detection
1708.02002
http://arxiv.org/abs/1708.02002v2
http://arxiv.org/pdf/1708.02002v2.pdf
https://github.com/trongnghia00/darknet
false
false
true
none
https://paperswithcode.com/paper/semi-supervised-learning-with-ladder-networks
Semi-Supervised Learning with Ladder Networks
1507.02672
http://arxiv.org/abs/1507.02672v2
http://arxiv.org/pdf/1507.02672v2.pdf
https://github.com/brandonrobertz/AcademicUrlTitles
false
false
true
none
https://paperswithcode.com/paper/co-designing-for-a-hybrid-workplace
Co-designing for a Hybrid Workplace Experience in Software Development
2212.09638
https://arxiv.org/abs/2212.09638v1
https://arxiv.org/pdf/2212.09638v1.pdf
https://github.com/co-design-hybrid/co-design-hybrid
true
true
false
none
https://paperswithcode.com/paper/towards-automated-deep-learning-efficient
Towards Automated Deep Learning: Efficient Joint Neural Architecture and Hyperparameter Search
1807.06906
http://arxiv.org/abs/1807.06906v1
http://arxiv.org/pdf/1807.06906v1.pdf
https://github.com/arberzela/EfficientNAS
false
false
true
pytorch
https://paperswithcode.com/paper/statistical-parametric-speech-synthesis-using
Statistical Parametric Speech Synthesis Using Generative Adversarial Networks Under A Multi-task Learning Framework
1707.01670
http://arxiv.org/abs/1707.01670v2
http://arxiv.org/pdf/1707.01670v2.pdf
https://github.com/rickyHong/GANTTS-update-repl
false
false
true
pytorch
https://paperswithcode.com/paper/perfect-sampling-with-unitary-tensor-networks
Perfect Sampling with Unitary Tensor Networks
1201.3974
http://arxiv.org/abs/1201.3974v3
http://arxiv.org/pdf/1201.3974v3.pdf
https://github.com/0/itensor-linear-rotors
false
false
true
none
https://paperswithcode.com/paper/real-time-single-image-and-video-super
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
1609.05158
http://arxiv.org/abs/1609.05158v2
http://arxiv.org/pdf/1609.05158v2.pdf
https://github.com/Nhat-Thanh/ESPCN-Pytorch
false
false
true
pytorch
https://paperswithcode.com/paper/a-structured-matrix-factorization-framework
A structured matrix factorization framework for large scale calcium imaging data analysis
1409.2903
http://arxiv.org/abs/1409.2903v1
http://arxiv.org/pdf/1409.2903v1.pdf
https://github.com/YGUO29/FANTASIA-CaImAn
false
false
true
none
https://paperswithcode.com/paper/recent-trends-in-deep-learning-based-natural
Recent Trends in Deep Learning Based Natural Language Processing
1708.02709
http://arxiv.org/abs/1708.02709v8
http://arxiv.org/pdf/1708.02709v8.pdf
https://github.com/ridakadri14/AspectBasedSentimentAnalysis
false
false
true
tf
https://paperswithcode.com/paper/cvae-gan-fine-grained-image-generation
CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
1703.10155
http://arxiv.org/abs/1703.10155v2
http://arxiv.org/pdf/1703.10155v2.pdf
https://github.com/One-sixth/CVAE-GAN_tensorlayer
false
false
true
tf
https://paperswithcode.com/paper/liqui-a-software-design-architecture-and
LIQUi|>: A Software Design Architecture and Domain-Specific Language for Quantum Computing
1402.4467
http://arxiv.org/abs/1402.4467v1
http://arxiv.org/pdf/1402.4467v1.pdf
https://github.com/hhy37/Liquid
false
false
true
none
https://paperswithcode.com/paper/quantum-algorithm-for-solving-linear-systems
Quantum algorithm for solving linear systems of equations
0811.3171
http://arxiv.org/abs/0811.3171v3
http://arxiv.org/pdf/0811.3171v3.pdf
https://github.com/hhy37/Liquid
false
false
true
none
https://paperswithcode.com/paper/automatic-inference-of-sound-correspondence
Automatic Inference of Sound Correspondence Patterns across Multiple Languages
null
https://aclanthology.org/J19-1004
https://aclanthology.org/J19-1004.pdf
https://github.com/lingpy/correspondence-pattern-paper
true
true
false
none
https://paperswithcode.com/paper/the-temporal-event-graph
The Temporal Event Graph
1706.02128
http://arxiv.org/abs/1706.02128v1
http://arxiv.org/pdf/1706.02128v1.pdf
https://github.com/empiricalstateofmind/eventgraphs
false
false
true
none
https://paperswithcode.com/paper/inverse-problems-in-asteroseismology
Inverse Problems in Asteroseismology
1808.06649
http://arxiv.org/abs/1808.06649v1
http://arxiv.org/pdf/1808.06649v1.pdf
https://github.com/earlbellinger/thesis
false
false
true
none
https://paperswithcode.com/paper/predictive-entropy-search-for-efficient
Predictive Entropy Search for Efficient Global Optimization of Black-box Functions
1406.2541
http://arxiv.org/abs/1406.2541v1
http://arxiv.org/pdf/1406.2541v1.pdf
https://github.com/chongkewu/PESC-HPC
false
false
true
none
https://paperswithcode.com/paper/tencent-ml-images-a-large-scale-multi-label
Tencent ML-Images: A Large-Scale Multi-Label Image Database for Visual Representation Learning
1901.01703
https://arxiv.org/abs/1901.01703v7
https://arxiv.org/pdf/1901.01703v7.pdf
https://github.com/Tencent/tencent-ml-images
true
true
true
tf
https://paperswithcode.com/paper/visual-relationship-detection-with-language-1
Visual Relationship Detection with Language prior and Softmax
1904.07798
http://arxiv.org/abs/1904.07798v1
http://arxiv.org/pdf/1904.07798v1.pdf
https://github.com/Jungjaewon/Visual-Relationship-Detection
false
false
true
caffe2
https://paperswithcode.com/paper/end-to-end-memory-networks
End-To-End Memory Networks
1503.08895
http://arxiv.org/abs/1503.08895v5
http://arxiv.org/pdf/1503.08895v5.pdf
https://github.com/dare0021/MemN2N_Bench
false
false
true
none
https://paperswithcode.com/paper/towards-high-performance-video-object
Towards High Performance Video Object Detection for Mobiles
1804.05830
http://arxiv.org/abs/1804.05830v1
http://arxiv.org/pdf/1804.05830v1.pdf
https://github.com/stanlee321/LightFlow-TensorFlow
false
false
true
tf
https://paperswithcode.com/paper/multimodal-word-distributions
Multimodal Word Distributions
1704.08424
https://arxiv.org/abs/1704.08424v2
https://arxiv.org/pdf/1704.08424v2.pdf
https://github.com/benathi/multisense-prob-fasttext
false
false
true
none
https://paperswithcode.com/paper/feature-importance-measure-for-non-linear
Feature Importance Measure for Non-linear Learning Algorithms
1611.07567
http://arxiv.org/abs/1611.07567v1
http://arxiv.org/pdf/1611.07567v1.pdf
https://github.com/mcvidomi/MFI
false
false
true
none
https://paperswithcode.com/paper/inference-of-stellar-parameters-from
Inference of stellar parameters from brightness variations
1805.04519
http://arxiv.org/abs/1805.04519v1
http://arxiv.org/pdf/1805.04519v1.pdf
https://github.com/mkness/ACFCannon
true
true
false
none
https://paperswithcode.com/paper/event-graphs-advances-and-applications-of
Event Graphs: Advances and Applications of Second-Order Time-Unfolded Temporal Network Models
1809.03457
http://arxiv.org/abs/1809.03457v1
http://arxiv.org/pdf/1809.03457v1.pdf
https://github.com/empiricalstateofmind/eventgraphs
true
true
true
none
https://paperswithcode.com/paper/separating-the-signal-from-the-noise-evidence
Separating the signal from the noise: Evidence for deceleration in old-age death rates
1707.09433
http://arxiv.org/abs/1707.09433v2
http://arxiv.org/pdf/1707.09433v2.pdf
https://github.com/dfeehan/oldage-paper-code-released
false
false
true
none
https://paperswithcode.com/paper/cnncnn-convolutional-decoders-for-image
CNN+CNN: Convolutional Decoders for Image Captioning
1805.09019
http://arxiv.org/abs/1805.09019v1
http://arxiv.org/pdf/1805.09019v1.pdf
https://github.com/qingzwang/GHA-ImageCaptioning
false
false
true
pytorch
https://paperswithcode.com/paper/spnets-differentiable-fluid-dynamics-for-deep
SPNets: Differentiable Fluid Dynamics for Deep Neural Networks
1806.06094
http://arxiv.org/abs/1806.06094v2
http://arxiv.org/pdf/1806.06094v2.pdf
https://github.com/cschenck/SmoothParticleNets
true
true
false
pytorch
https://paperswithcode.com/paper/deep-residual-learning-for-image-recognition
Deep Residual Learning for Image Recognition
1512.03385
http://arxiv.org/abs/1512.03385v1
http://arxiv.org/pdf/1512.03385v1.pdf
https://github.com/MindSpore-paper-code-3/code7/tree/main/FaceAttribute
false
false
false
mindspore
https://paperswithcode.com/paper/efficient-estimation-of-word-representations
Efficient Estimation of Word Representations in Vector Space
1301.3781
http://arxiv.org/abs/1301.3781v3
http://arxiv.org/pdf/1301.3781v3.pdf
https://github.com/palmagro/gg2vec
false
false
true
none
https://paperswithcode.com/paper/a-structured-self-attentive-sentence
A Structured Self-attentive Sentence Embedding
1703.03130
http://arxiv.org/abs/1703.03130v1
http://arxiv.org/pdf/1703.03130v1.pdf
https://github.com/hantek/SelfAttentiveSentEmbed
false
false
true
pytorch
https://paperswithcode.com/paper/focal-loss-for-dense-object-detection
Focal Loss for Dense Object Detection
1708.02002
http://arxiv.org/abs/1708.02002v2
http://arxiv.org/pdf/1708.02002v2.pdf
https://github.com/fizyr/keras-retinanet
false
false
true
tf
https://paperswithcode.com/paper/yolo9000-better-faster-stronger
YOLO9000: Better, Faster, Stronger
1612.08242
http://arxiv.org/abs/1612.08242v1
http://arxiv.org/pdf/1612.08242v1.pdf
https://github.com/vantupham/darknet
false
false
true
none
https://paperswithcode.com/paper/u-net-convolutional-networks-for-biomedical
U-Net: Convolutional Networks for Biomedical Image Segmentation
1505.04597
http://arxiv.org/abs/1505.04597v1
http://arxiv.org/pdf/1505.04597v1.pdf
https://github.com/muramasa8191/DeepLearning
false
false
true
tf
https://paperswithcode.com/paper/sgdr-stochastic-gradient-descent-with-warm
SGDR: Stochastic Gradient Descent with Warm Restarts
1608.03983
http://arxiv.org/abs/1608.03983v5
http://arxiv.org/pdf/1608.03983v5.pdf
https://github.com/Harshvardhan1/cyclic-learning-schedulers-pytorch
false
false
true
pytorch
https://paperswithcode.com/paper/spatiotemporal-multiplier-networks-for-video
Spatiotemporal Multiplier Networks for Video Action Recognition
null
http://openaccess.thecvf.com/content_cvpr_2017/html/Feichtenhofer_Spatiotemporal_Multiplier_Networks_CVPR_2017_paper.html
http://openaccess.thecvf.com/content_cvpr_2017/papers/Feichtenhofer_Spatiotemporal_Multiplier_Networks_CVPR_2017_paper.pdf
https://github.com/feichtenhofer/st-resnet
true
true
false
none
https://paperswithcode.com/paper/knowing-when-to-look-adaptive-attention-via-a
Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image Captioning
1612.01887
http://arxiv.org/abs/1612.01887v2
http://arxiv.org/pdf/1612.01887v2.pdf
https://github.com/miroblog/AdaptiveAttention
false
false
true
pytorch
https://paperswithcode.com/paper/salient-object-detection-driven-by-fixation
Salient Object Detection Driven by Fixation Prediction
null
http://openaccess.thecvf.com/content_cvpr_2018/html/Wang_Salient_Object_Detection_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Salient_Object_Detection_CVPR_2018_paper.pdf
https://github.com/wenguanwang/ASNet
true
true
false
none
https://paperswithcode.com/paper/supervised-learning-of-universal-sentence
Supervised Learning of Universal Sentence Representations from Natural Language Inference Data
1705.02364
http://arxiv.org/abs/1705.02364v5
http://arxiv.org/pdf/1705.02364v5.pdf
https://github.com/facebookresearch/InferSent
true
true
true
pytorch
https://paperswithcode.com/paper/a-high-coverage-method-for-automatic-false
A High Coverage Method for Automatic False Friends Detection for Spanish and Portuguese
null
https://aclanthology.org/W18-3903
https://aclanthology.org/W18-3903.pdf
https://github.com/pln-fing-udelar/false-friends
true
true
false
none
https://paperswithcode.com/paper/the-chefs-hat-simulation-environment-for
The Chef's Hat Simulation Environment for Reinforcement-Learning-Based Agents
2003.05861
https://arxiv.org/abs/2003.05861v1
https://arxiv.org/pdf/2003.05861v1.pdf
https://github.com/pablovin/MoodyFramework
false
false
true
none
https://paperswithcode.com/paper/deep-video-deblurring
Deep Video Deblurring
1611.08387
http://arxiv.org/abs/1611.08387v1
http://arxiv.org/pdf/1611.08387v1.pdf
https://github.com/susomena/DeepSlowMotion
false
false
true
tf
https://paperswithcode.com/paper/adaptive-system-optimization-using-random
Adaptive system optimization using random directions stochastic approximation
1502.05577
http://arxiv.org/abs/1502.05577v2
http://arxiv.org/pdf/1502.05577v2.pdf
https://github.com/prashla/RDSA
true
true
false
none
https://paperswithcode.com/paper/identification-of-emergency-blood-donation
Identification of Emergency Blood Donation Request on Twitter
null
https://aclanthology.org/W18-5907
https://aclanthology.org/W18-5907.pdf
https://github.com/pmathur5k10/EBDR
true
true
false
none
https://paperswithcode.com/paper/rethinking-on-multi-stage-networks-for-human
Rethinking on Multi-Stage Networks for Human Pose Estimation
1901.00148
https://arxiv.org/abs/1901.00148v4
https://arxiv.org/pdf/1901.00148v4.pdf
https://github.com/chenyilun95/tf-cpn
false
false
true
tf
https://paperswithcode.com/paper/semantic-visual-navigation-by-watching
Semantic Visual Navigation by Watching YouTube Videos
2006.10034
https://arxiv.org/abs/2006.10034v2
https://arxiv.org/pdf/2006.10034v2.pdf
https://github.com/MatthewChang/video-dqn
true
false
false
pytorch
https://paperswithcode.com/paper/sound-event-detection-and-time-frequency
Sound Event Detection and Time-Frequency Segmentation from Weakly Labelled Data
1804.04715
http://arxiv.org/abs/1804.04715v2
http://arxiv.org/pdf/1804.04715v2.pdf
https://github.com/qiuqiangkong/sed_time_freq_segmentation
true
true
false
pytorch
https://paperswithcode.com/paper/dueling-network-architectures-for-deep
Dueling Network Architectures for Deep Reinforcement Learning
1511.06581
http://arxiv.org/abs/1511.06581v3
http://arxiv.org/pdf/1511.06581v3.pdf
https://github.com/prajwalgatti/DRL-Continuous-Control
false
false
true
none
https://paperswithcode.com/paper/very-deep-convolutional-networks-for-large
Very Deep Convolutional Networks for Large-Scale Image Recognition
1409.1556
http://arxiv.org/abs/1409.1556v6
http://arxiv.org/pdf/1409.1556v6.pdf
https://github.com/Tools4Project/4501Project
false
false
true
tf
https://paperswithcode.com/paper/efficient-training-of-energy-based-models-via
Efficient training of energy-based models via spin-glass control
1910.01592
https://arxiv.org/abs/1910.01592v4
https://arxiv.org/pdf/1910.01592v4.pdf
https://github.com/apozas/rapid
true
true
true
pytorch
https://paperswithcode.com/paper/context-dependent-fine-grained-entity-type
Context-Dependent Fine-Grained Entity Type Tagging
1412.1820
http://arxiv.org/abs/1412.1820v2
http://arxiv.org/pdf/1412.1820v2.pdf
https://github.com/shanzhenren/AFET
false
false
true
none
https://paperswithcode.com/paper/sampling-generative-networks
Sampling Generative Networks
1609.04468
http://arxiv.org/abs/1609.04468v3
http://arxiv.org/pdf/1609.04468v3.pdf
https://github.com/ptrblck/prog_gans_pytorch_inference
false
false
true
pytorch
https://paperswithcode.com/paper/breaking-the-curse-of-space-explosion-towards
Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search
2007.07197
https://arxiv.org/abs/2007.07197v2
https://arxiv.org/pdf/2007.07197v2.pdf
https://github.com/guoyongcs/CNAS
true
true
false
pytorch
https://paperswithcode.com/paper/learning-imbalanced-datasets-with-label
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss
1906.07413
https://arxiv.org/abs/1906.07413v2
https://arxiv.org/pdf/1906.07413v2.pdf
https://github.com/feidfoe/AdjustBnd4Imbalance
false
false
true
pytorch
https://paperswithcode.com/paper/learning-2d-temporal-adjacent-networks-for
Learning 2D Temporal Adjacent Networks for Moment Localization with Natural Language
1912.03590
https://arxiv.org/abs/1912.03590v3
https://arxiv.org/pdf/1912.03590v3.pdf
https://github.com/researchmm/2D-TAN
false
false
true
pytorch
https://paperswithcode.com/paper/multigrid-predictive-filter-flow-for
Multigrid Predictive Filter Flow for Unsupervised Learning on Videos
1904.01693
http://arxiv.org/abs/1904.01693v1
http://arxiv.org/pdf/1904.01693v1.pdf
https://github.com/bestaar/predictiveFilterFlow
false
false
true
pytorch
https://paperswithcode.com/paper/image-reconstruction-with-predictive-filter
Image Reconstruction with Predictive Filter Flow
1811.11482
http://arxiv.org/abs/1811.11482v1
http://arxiv.org/pdf/1811.11482v1.pdf
https://github.com/bestaar/predictiveFilterFlow
false
false
true
pytorch
https://paperswithcode.com/paper/revisiting-unreasonable-effectiveness-of-data
Revisiting Unreasonable Effectiveness of Data in Deep Learning Era
1707.02968
http://arxiv.org/abs/1707.02968v2
http://arxiv.org/pdf/1707.02968v2.pdf
https://github.com/Tencent/tencent-ml-images
false
false
true
tf
https://paperswithcode.com/paper/general-purpose-atomic-crosschain
General Purpose Atomic Crosschain Transactions
2011.12783
https://arxiv.org/abs/2011.12783v4
https://arxiv.org/pdf/2011.12783v4.pdf
https://github.com/ConsenSys/gpact
true
true
true
none
https://paperswithcode.com/paper/ms-dpps-multi-source-determinantal-point
MS-DPPs: Multi-Source Determinantal Point Processes for Contextual Diversity Refinement of Composite Attributes in Text to Image Retrieval
2507.06654
https://arxiv.org/abs/2507.06654v1
https://arxiv.org/pdf/2507.06654v1.pdf
https://github.com/nec-n-sogi/msdpp
true
true
true
pytorch
https://paperswithcode.com/paper/atlas-end-to-end-3d-scene-reconstruction-from
Atlas: End-to-End 3D Scene Reconstruction from Posed Images
2003.10432
https://arxiv.org/abs/2003.10432v3
https://arxiv.org/pdf/2003.10432v3.pdf
https://github.com/magicleap/Atlas
false
false
true
pytorch
https://paperswithcode.com/paper/nimbro-op2x-adult-sized-open-source-3d
NimbRo-OP2X: Adult-sized Open-source 3D Printed Humanoid Robot
1810.08395
http://arxiv.org/abs/1810.08395v1
http://arxiv.org/pdf/1810.08395v1.pdf
https://github.com/iswariyam/Mini-semantic-segmentation-network-pytorch
false
false
true
pytorch
https://paperswithcode.com/paper/invariance-analysis-of-saliency-models-versus
Invariance Analysis of Saliency Models versus Human Gaze During Scene Free Viewing
1810.04456
http://arxiv.org/abs/1810.04456v1
http://arxiv.org/pdf/1810.04456v1.pdf
https://github.com/CZHQuality/Sal-CFS-GAN
false
false
true
tf
https://paperswithcode.com/paper/unpaired-image-to-image-translation-using
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
1703.10593
https://arxiv.org/abs/1703.10593v7
https://arxiv.org/pdf/1703.10593v7.pdf
https://github.com/Shumway82/CycleGAN
false
false
true
tf
https://paperswithcode.com/paper/semi-supervised-learning-with-ladder-networks
Semi-Supervised Learning with Ladder Networks
1507.02672
http://arxiv.org/abs/1507.02672v2
http://arxiv.org/pdf/1507.02672v2.pdf
https://github.com/CuriousAI/ladder
false
false
true
none
https://paperswithcode.com/paper/bayesian-optimization-of-hyper-parameters-in
Bayesian optimization of hyper-parameters in reservoir computing
1611.05193
http://arxiv.org/abs/1611.05193v3
http://arxiv.org/pdf/1611.05193v3.pdf
https://github.com/rednotion/parallel_esn_web
false
false
true
none
https://paperswithcode.com/paper/convolutional-neural-network-architecture-for
Convolutional neural network architecture for geometric matching
1703.05593
http://arxiv.org/abs/1703.05593v2
http://arxiv.org/pdf/1703.05593v2.pdf
https://github.com/ignacio-rocco/cnngeometric_pytorch
false
false
true
pytorch
https://paperswithcode.com/paper/neural-audio-synthesis-of-musical-notes-with
Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders
1704.01279
http://arxiv.org/abs/1704.01279v1
http://arxiv.org/pdf/1704.01279v1.pdf
https://github.com/NoaCahan/WavenetAutoEncoder
false
false
true
pytorch
https://paperswithcode.com/paper/tips-and-tricks-for-visual-question-answering
Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challenge
1708.02711
http://arxiv.org/abs/1708.02711v1
http://arxiv.org/pdf/1708.02711v1.pdf
https://github.com/feifengwhu/question_attention
false
false
true
pytorch
https://paperswithcode.com/paper/retinal-vessel-segmentation-based-on-fully
Retinal vessel segmentation based on Fully Convolutional Neural Networks
1812.07110
http://arxiv.org/abs/1812.07110v2
http://arxiv.org/pdf/1812.07110v2.pdf
https://github.com/americofmoliveira/VesselSegmentation_ESWA
false
false
true
none
https://paperswithcode.com/paper/randomized-matrix-decompositions-using-r
Randomized Matrix Decompositions using R
1608.02148
http://arxiv.org/abs/1608.02148v4
http://arxiv.org/pdf/1608.02148v4.pdf
https://github.com/Benli11/ristretto
false
false
true
none
https://paperswithcode.com/paper/modified-shallow-water-equations-for
Modified Shallow Water Equations for significantly varying seabeds
1202.6542
http://arxiv.org/abs/1202.6542v6
http://arxiv.org/pdf/1202.6542v6.pdf
https://github.com/huwb/crest-oceanrender
false
false
true
none
https://paperswithcode.com/paper/semantic-document-distance-measures-and
Semantic Document Distance Measures and Unsupervised Document Revision Detection
1709.01256
http://arxiv.org/abs/1709.01256v2
http://arxiv.org/pdf/1709.01256v2.pdf
https://github.com/XiaofengZhu/wDTW-wTED
true
true
true
none
https://paperswithcode.com/paper/revisiting-decomposable-submodular-function
Revisiting Decomposable Submodular Function Minimization with Incidence Relations
1803.03851
http://arxiv.org/abs/1803.03851v3
http://arxiv.org/pdf/1803.03851v3.pdf
https://github.com/lipan00123/DSFM-with-incidence-relations
true
true
false
none
https://paperswithcode.com/paper/learning-deep-representations-of-fine-grained
Learning Deep Representations of Fine-grained Visual Descriptions
1605.05395
http://arxiv.org/abs/1605.05395v1
http://arxiv.org/pdf/1605.05395v1.pdf
https://github.com/Maymaher/StackGANv2
false
false
true
pytorch
https://paperswithcode.com/paper/an-end-to-end-trainable-neural-network-for
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition
1507.05717
http://arxiv.org/abs/1507.05717v1
http://arxiv.org/pdf/1507.05717v1.pdf
https://github.com/bai-shang/crnn_ctc_ocr.Tensorflow
false
false
true
tf
https://paperswithcode.com/paper/learning-to-learn-without-forgetting-by
Learning to Learn without Forgetting by Maximizing Transfer and Minimizing Interference
1810.11910
https://arxiv.org/abs/1810.11910v3
https://arxiv.org/pdf/1810.11910v3.pdf
https://github.com/mattriemer/mer
true
true
false
pytorch
https://paperswithcode.com/paper/pythia-v01-the-winning-entry-to-the-vqa
Pythia v0.1: the Winning Entry to the VQA Challenge 2018
1807.09956
http://arxiv.org/abs/1807.09956v2
http://arxiv.org/pdf/1807.09956v2.pdf
https://github.com/songhe17/pythia-clone
false
false
true
pytorch
https://paperswithcode.com/paper/generative-adversarial-text-to-image
Generative Adversarial Text to Image Synthesis
1605.05396
http://arxiv.org/abs/1605.05396v2
http://arxiv.org/pdf/1605.05396v2.pdf
https://github.com/Maymaher/StackGANv2
false
false
true
pytorch
https://paperswithcode.com/paper/attngan-fine-grained-text-to-image-generation
AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks
1711.10485
http://arxiv.org/abs/1711.10485v1
http://arxiv.org/pdf/1711.10485v1.pdf
https://github.com/Maymaher/StackGANv2
false
false
true
pytorch
https://paperswithcode.com/paper/benchmarking-machine-learning-models-on-eicu
Benchmarking machine learning models on multi-centre eICU critical care dataset
1910.00964
https://arxiv.org/abs/1910.00964v3
https://arxiv.org/pdf/1910.00964v3.pdf
https://github.com/mostafaalishahi/eICU_Benchmark
true
true
true
none
End of preview. Expand in Data Studio

This dataset will not be updated. It corresponds to the last available public snapshot of the data, retrieved on July 28th, 2025.

Downloads last month
606