paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/odyssey-a-public-gpu-based-code-for-general
|
Odyssey: A Public GPU-Based Code for General-Relativistic Radiative Transfer in Kerr Spacetime
|
1601.02063
|
https://arxiv.org/abs/1601.02063v2
|
https://arxiv.org/pdf/1601.02063v2.pdf
|
https://github.com/LeonGeiger/Kerr
| false | false | true |
none
|
https://paperswithcode.com/paper/efficient-leave-one-out-cross-validation-for
|
Efficient leave-one-out cross-validation for Bayesian non-factorized normal and Student-t models
|
1810.10559
|
https://arxiv.org/abs/1810.10559v5
|
https://arxiv.org/pdf/1810.10559v5.pdf
|
https://github.com/paul-buerkner/psis-non-factorized-paper
| true | true | false |
none
|
https://paperswithcode.com/paper/automatic-post-editing-of-machine-translation
|
Automatic Post-Editing of Machine Translation: A Neural Programmer-Interpreter Approach
| null |
https://aclanthology.org/D18-1341
|
https://aclanthology.org/D18-1341.pdf
|
https://github.com/trangvu/ape-npi
| false | false | false |
tf
|
https://paperswithcode.com/paper/attngan-fine-grained-text-to-image-generation
|
AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks
|
1711.10485
|
http://arxiv.org/abs/1711.10485v1
|
http://arxiv.org/pdf/1711.10485v1.pdf
|
https://github.com/bprabhakar/text-to-image
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/photo-realistic-single-image-super-resolution
|
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
|
1609.04802
|
http://arxiv.org/abs/1609.04802v5
|
http://arxiv.org/pdf/1609.04802v5.pdf
|
https://github.com/2023-MindSpore-1/ms-code-210/tree/main/CSNL
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/distilling-interpretable-models-into-human
|
Distilling Interpretable Models into Human-Readable Code
|
2101.08393
|
https://arxiv.org/abs/2101.08393v2
|
https://arxiv.org/pdf/2101.08393v2.pdf
|
https://github.com/google/pwlfit
| true | true | false |
none
|
https://paperswithcode.com/paper/wide-residual-networks
|
Wide Residual Networks
|
1605.07146
|
http://arxiv.org/abs/1605.07146v4
|
http://arxiv.org/pdf/1605.07146v4.pdf
|
https://github.com/epfl-ml-reproducers/subspace-attack-reproduction
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/show-and-tell-lessons-learned-from-the-2015
|
Show and Tell: Lessons learned from the 2015 MSCOCO Image Captioning Challenge
|
1609.06647
|
http://arxiv.org/abs/1609.06647v1
|
http://arxiv.org/pdf/1609.06647v1.pdf
|
https://github.com/HughKu/Im2txt
| false | false | true |
tf
|
https://paperswithcode.com/paper/a-wavenet-for-speech-denoising
|
A Wavenet for Speech Denoising
|
1706.07162
|
http://arxiv.org/abs/1706.07162v3
|
http://arxiv.org/pdf/1706.07162v3.pdf
|
https://github.com/francesclluis/source-separation-wavenet
| false | false | true |
tf
|
https://paperswithcode.com/paper/stackgan-realistic-image-synthesis-with
|
StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks
|
1710.10916
|
http://arxiv.org/abs/1710.10916v3
|
http://arxiv.org/pdf/1710.10916v3.pdf
|
https://github.com/Maymaher/StackGANv2
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/towards-k-means-friendly-spaces-simultaneous
|
Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering
|
1610.04794
|
http://arxiv.org/abs/1610.04794v2
|
http://arxiv.org/pdf/1610.04794v2.pdf
|
https://github.com/boyangumn/DCN
| true | true | true |
none
|
https://paperswithcode.com/paper/simulaqron-a-simulator-for-developing-quantum
|
SimulaQron - A simulator for developing quantum internet software
|
1712.08032
|
http://arxiv.org/abs/1712.08032v2
|
http://arxiv.org/pdf/1712.08032v2.pdf
|
https://github.com/quantumprotocolzoo/protocols
| false | false | true |
none
|
https://paperswithcode.com/paper/recipenlg-a-cooking-recipes-dataset-for-semi
|
RecipeNLG: A Cooking Recipes Dataset for Semi-Structured Text Generation
| null |
https://aclanthology.org/2020.inlg-1.4
|
https://aclanthology.org/2020.inlg-1.4.pdf
|
https://github.com/Glorf/recipenlg
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/online-deep-learning-learning-deep-neural
|
Online Deep Learning: Learning Deep Neural Networks on the Fly
|
1711.03705
|
http://arxiv.org/abs/1711.03705v1
|
http://arxiv.org/pdf/1711.03705v1.pdf
|
https://github.com/LIBOL/ODL
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/model-rubik-s-cube-twisting-resolution-depth
|
Model Rubik's Cube: Twisting Resolution, Depth and Width for TinyNets
|
2010.14819
|
https://arxiv.org/abs/2010.14819v2
|
https://arxiv.org/pdf/2010.14819v2.pdf
|
https://github.com/leondgarse/keras_cv_attention_models/tree/main/keras_cv_attention_models/mobilenetv3_family
| false | false | false |
tf
|
https://paperswithcode.com/paper/190600133
|
ArcticNet: A Deep Learning Solution to Classify Arctic Wetlands
|
1906.00133
|
https://arxiv.org/abs/1906.00133v1
|
https://arxiv.org/pdf/1906.00133v1.pdf
|
https://github.com/geekJZY/arcticnet
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/multi-label-image-classification-via
|
Multi-Label Image Classification via Knowledge Distillation from Weakly-Supervised Detection
|
1809.05884
|
http://arxiv.org/abs/1809.05884v2
|
http://arxiv.org/pdf/1809.05884v2.pdf
|
https://github.com/Yochengliu/MLIC-KD-WSD
| false | false | true |
none
|
https://paperswithcode.com/paper/few-shot-learning-with-graph-neural-networks
|
Few-Shot Learning with Graph Neural Networks
|
1711.04043
|
http://arxiv.org/abs/1711.04043v3
|
http://arxiv.org/pdf/1711.04043v3.pdf
|
https://github.com/HoganZhang/few-shot-gnn
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/generative-adversarial-networks
|
Generative Adversarial Networks
|
1406.2661
|
https://arxiv.org/abs/1406.2661v1
|
https://arxiv.org/pdf/1406.2661v1.pdf
|
https://github.com/syahdeini/gan
| false | false | true |
tf
|
https://paperswithcode.com/paper/mastering-chess-and-shogi-by-self-play-with-a
|
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm
|
1712.01815
|
http://arxiv.org/abs/1712.01815v1
|
http://arxiv.org/pdf/1712.01815v1.pdf
|
https://github.com/Neo-The1/ThinkingTicTacToe
| false | false | true |
tf
|
https://paperswithcode.com/paper/focal-loss-for-dense-object-detection
|
Focal Loss for Dense Object Detection
|
1708.02002
|
http://arxiv.org/abs/1708.02002v2
|
http://arxiv.org/pdf/1708.02002v2.pdf
|
https://github.com/trongnghia00/darknet
| false | false | true |
none
|
https://paperswithcode.com/paper/semi-supervised-learning-with-ladder-networks
|
Semi-Supervised Learning with Ladder Networks
|
1507.02672
|
http://arxiv.org/abs/1507.02672v2
|
http://arxiv.org/pdf/1507.02672v2.pdf
|
https://github.com/brandonrobertz/AcademicUrlTitles
| false | false | true |
none
|
https://paperswithcode.com/paper/co-designing-for-a-hybrid-workplace
|
Co-designing for a Hybrid Workplace Experience in Software Development
|
2212.09638
|
https://arxiv.org/abs/2212.09638v1
|
https://arxiv.org/pdf/2212.09638v1.pdf
|
https://github.com/co-design-hybrid/co-design-hybrid
| true | true | false |
none
|
https://paperswithcode.com/paper/towards-automated-deep-learning-efficient
|
Towards Automated Deep Learning: Efficient Joint Neural Architecture and Hyperparameter Search
|
1807.06906
|
http://arxiv.org/abs/1807.06906v1
|
http://arxiv.org/pdf/1807.06906v1.pdf
|
https://github.com/arberzela/EfficientNAS
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/statistical-parametric-speech-synthesis-using
|
Statistical Parametric Speech Synthesis Using Generative Adversarial Networks Under A Multi-task Learning Framework
|
1707.01670
|
http://arxiv.org/abs/1707.01670v2
|
http://arxiv.org/pdf/1707.01670v2.pdf
|
https://github.com/rickyHong/GANTTS-update-repl
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/perfect-sampling-with-unitary-tensor-networks
|
Perfect Sampling with Unitary Tensor Networks
|
1201.3974
|
http://arxiv.org/abs/1201.3974v3
|
http://arxiv.org/pdf/1201.3974v3.pdf
|
https://github.com/0/itensor-linear-rotors
| false | false | true |
none
|
https://paperswithcode.com/paper/real-time-single-image-and-video-super
|
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
|
1609.05158
|
http://arxiv.org/abs/1609.05158v2
|
http://arxiv.org/pdf/1609.05158v2.pdf
|
https://github.com/Nhat-Thanh/ESPCN-Pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-structured-matrix-factorization-framework
|
A structured matrix factorization framework for large scale calcium imaging data analysis
|
1409.2903
|
http://arxiv.org/abs/1409.2903v1
|
http://arxiv.org/pdf/1409.2903v1.pdf
|
https://github.com/YGUO29/FANTASIA-CaImAn
| false | false | true |
none
|
https://paperswithcode.com/paper/recent-trends-in-deep-learning-based-natural
|
Recent Trends in Deep Learning Based Natural Language Processing
|
1708.02709
|
http://arxiv.org/abs/1708.02709v8
|
http://arxiv.org/pdf/1708.02709v8.pdf
|
https://github.com/ridakadri14/AspectBasedSentimentAnalysis
| false | false | true |
tf
|
https://paperswithcode.com/paper/cvae-gan-fine-grained-image-generation
|
CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
|
1703.10155
|
http://arxiv.org/abs/1703.10155v2
|
http://arxiv.org/pdf/1703.10155v2.pdf
|
https://github.com/One-sixth/CVAE-GAN_tensorlayer
| false | false | true |
tf
|
https://paperswithcode.com/paper/liqui-a-software-design-architecture-and
|
LIQUi|>: A Software Design Architecture and Domain-Specific Language for Quantum Computing
|
1402.4467
|
http://arxiv.org/abs/1402.4467v1
|
http://arxiv.org/pdf/1402.4467v1.pdf
|
https://github.com/hhy37/Liquid
| false | false | true |
none
|
https://paperswithcode.com/paper/quantum-algorithm-for-solving-linear-systems
|
Quantum algorithm for solving linear systems of equations
|
0811.3171
|
http://arxiv.org/abs/0811.3171v3
|
http://arxiv.org/pdf/0811.3171v3.pdf
|
https://github.com/hhy37/Liquid
| false | false | true |
none
|
https://paperswithcode.com/paper/automatic-inference-of-sound-correspondence
|
Automatic Inference of Sound Correspondence Patterns across Multiple Languages
| null |
https://aclanthology.org/J19-1004
|
https://aclanthology.org/J19-1004.pdf
|
https://github.com/lingpy/correspondence-pattern-paper
| true | true | false |
none
|
https://paperswithcode.com/paper/the-temporal-event-graph
|
The Temporal Event Graph
|
1706.02128
|
http://arxiv.org/abs/1706.02128v1
|
http://arxiv.org/pdf/1706.02128v1.pdf
|
https://github.com/empiricalstateofmind/eventgraphs
| false | false | true |
none
|
https://paperswithcode.com/paper/inverse-problems-in-asteroseismology
|
Inverse Problems in Asteroseismology
|
1808.06649
|
http://arxiv.org/abs/1808.06649v1
|
http://arxiv.org/pdf/1808.06649v1.pdf
|
https://github.com/earlbellinger/thesis
| false | false | true |
none
|
https://paperswithcode.com/paper/predictive-entropy-search-for-efficient
|
Predictive Entropy Search for Efficient Global Optimization of Black-box Functions
|
1406.2541
|
http://arxiv.org/abs/1406.2541v1
|
http://arxiv.org/pdf/1406.2541v1.pdf
|
https://github.com/chongkewu/PESC-HPC
| false | false | true |
none
|
https://paperswithcode.com/paper/tencent-ml-images-a-large-scale-multi-label
|
Tencent ML-Images: A Large-Scale Multi-Label Image Database for Visual Representation Learning
|
1901.01703
|
https://arxiv.org/abs/1901.01703v7
|
https://arxiv.org/pdf/1901.01703v7.pdf
|
https://github.com/Tencent/tencent-ml-images
| true | true | true |
tf
|
https://paperswithcode.com/paper/visual-relationship-detection-with-language-1
|
Visual Relationship Detection with Language prior and Softmax
|
1904.07798
|
http://arxiv.org/abs/1904.07798v1
|
http://arxiv.org/pdf/1904.07798v1.pdf
|
https://github.com/Jungjaewon/Visual-Relationship-Detection
| false | false | true |
caffe2
|
https://paperswithcode.com/paper/end-to-end-memory-networks
|
End-To-End Memory Networks
|
1503.08895
|
http://arxiv.org/abs/1503.08895v5
|
http://arxiv.org/pdf/1503.08895v5.pdf
|
https://github.com/dare0021/MemN2N_Bench
| false | false | true |
none
|
https://paperswithcode.com/paper/towards-high-performance-video-object
|
Towards High Performance Video Object Detection for Mobiles
|
1804.05830
|
http://arxiv.org/abs/1804.05830v1
|
http://arxiv.org/pdf/1804.05830v1.pdf
|
https://github.com/stanlee321/LightFlow-TensorFlow
| false | false | true |
tf
|
https://paperswithcode.com/paper/multimodal-word-distributions
|
Multimodal Word Distributions
|
1704.08424
|
https://arxiv.org/abs/1704.08424v2
|
https://arxiv.org/pdf/1704.08424v2.pdf
|
https://github.com/benathi/multisense-prob-fasttext
| false | false | true |
none
|
https://paperswithcode.com/paper/feature-importance-measure-for-non-linear
|
Feature Importance Measure for Non-linear Learning Algorithms
|
1611.07567
|
http://arxiv.org/abs/1611.07567v1
|
http://arxiv.org/pdf/1611.07567v1.pdf
|
https://github.com/mcvidomi/MFI
| false | false | true |
none
|
https://paperswithcode.com/paper/inference-of-stellar-parameters-from
|
Inference of stellar parameters from brightness variations
|
1805.04519
|
http://arxiv.org/abs/1805.04519v1
|
http://arxiv.org/pdf/1805.04519v1.pdf
|
https://github.com/mkness/ACFCannon
| true | true | false |
none
|
https://paperswithcode.com/paper/event-graphs-advances-and-applications-of
|
Event Graphs: Advances and Applications of Second-Order Time-Unfolded Temporal Network Models
|
1809.03457
|
http://arxiv.org/abs/1809.03457v1
|
http://arxiv.org/pdf/1809.03457v1.pdf
|
https://github.com/empiricalstateofmind/eventgraphs
| true | true | true |
none
|
https://paperswithcode.com/paper/separating-the-signal-from-the-noise-evidence
|
Separating the signal from the noise: Evidence for deceleration in old-age death rates
|
1707.09433
|
http://arxiv.org/abs/1707.09433v2
|
http://arxiv.org/pdf/1707.09433v2.pdf
|
https://github.com/dfeehan/oldage-paper-code-released
| false | false | true |
none
|
https://paperswithcode.com/paper/cnncnn-convolutional-decoders-for-image
|
CNN+CNN: Convolutional Decoders for Image Captioning
|
1805.09019
|
http://arxiv.org/abs/1805.09019v1
|
http://arxiv.org/pdf/1805.09019v1.pdf
|
https://github.com/qingzwang/GHA-ImageCaptioning
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/spnets-differentiable-fluid-dynamics-for-deep
|
SPNets: Differentiable Fluid Dynamics for Deep Neural Networks
|
1806.06094
|
http://arxiv.org/abs/1806.06094v2
|
http://arxiv.org/pdf/1806.06094v2.pdf
|
https://github.com/cschenck/SmoothParticleNets
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/deep-residual-learning-for-image-recognition
|
Deep Residual Learning for Image Recognition
|
1512.03385
|
http://arxiv.org/abs/1512.03385v1
|
http://arxiv.org/pdf/1512.03385v1.pdf
|
https://github.com/MindSpore-paper-code-3/code7/tree/main/FaceAttribute
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/efficient-estimation-of-word-representations
|
Efficient Estimation of Word Representations in Vector Space
|
1301.3781
|
http://arxiv.org/abs/1301.3781v3
|
http://arxiv.org/pdf/1301.3781v3.pdf
|
https://github.com/palmagro/gg2vec
| false | false | true |
none
|
https://paperswithcode.com/paper/a-structured-self-attentive-sentence
|
A Structured Self-attentive Sentence Embedding
|
1703.03130
|
http://arxiv.org/abs/1703.03130v1
|
http://arxiv.org/pdf/1703.03130v1.pdf
|
https://github.com/hantek/SelfAttentiveSentEmbed
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/focal-loss-for-dense-object-detection
|
Focal Loss for Dense Object Detection
|
1708.02002
|
http://arxiv.org/abs/1708.02002v2
|
http://arxiv.org/pdf/1708.02002v2.pdf
|
https://github.com/fizyr/keras-retinanet
| false | false | true |
tf
|
https://paperswithcode.com/paper/yolo9000-better-faster-stronger
|
YOLO9000: Better, Faster, Stronger
|
1612.08242
|
http://arxiv.org/abs/1612.08242v1
|
http://arxiv.org/pdf/1612.08242v1.pdf
|
https://github.com/vantupham/darknet
| false | false | true |
none
|
https://paperswithcode.com/paper/u-net-convolutional-networks-for-biomedical
|
U-Net: Convolutional Networks for Biomedical Image Segmentation
|
1505.04597
|
http://arxiv.org/abs/1505.04597v1
|
http://arxiv.org/pdf/1505.04597v1.pdf
|
https://github.com/muramasa8191/DeepLearning
| false | false | true |
tf
|
https://paperswithcode.com/paper/sgdr-stochastic-gradient-descent-with-warm
|
SGDR: Stochastic Gradient Descent with Warm Restarts
|
1608.03983
|
http://arxiv.org/abs/1608.03983v5
|
http://arxiv.org/pdf/1608.03983v5.pdf
|
https://github.com/Harshvardhan1/cyclic-learning-schedulers-pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/spatiotemporal-multiplier-networks-for-video
|
Spatiotemporal Multiplier Networks for Video Action Recognition
| null |
http://openaccess.thecvf.com/content_cvpr_2017/html/Feichtenhofer_Spatiotemporal_Multiplier_Networks_CVPR_2017_paper.html
|
http://openaccess.thecvf.com/content_cvpr_2017/papers/Feichtenhofer_Spatiotemporal_Multiplier_Networks_CVPR_2017_paper.pdf
|
https://github.com/feichtenhofer/st-resnet
| true | true | false |
none
|
https://paperswithcode.com/paper/knowing-when-to-look-adaptive-attention-via-a
|
Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image Captioning
|
1612.01887
|
http://arxiv.org/abs/1612.01887v2
|
http://arxiv.org/pdf/1612.01887v2.pdf
|
https://github.com/miroblog/AdaptiveAttention
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/salient-object-detection-driven-by-fixation
|
Salient Object Detection Driven by Fixation Prediction
| null |
http://openaccess.thecvf.com/content_cvpr_2018/html/Wang_Salient_Object_Detection_CVPR_2018_paper.html
|
http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Salient_Object_Detection_CVPR_2018_paper.pdf
|
https://github.com/wenguanwang/ASNet
| true | true | false |
none
|
https://paperswithcode.com/paper/supervised-learning-of-universal-sentence
|
Supervised Learning of Universal Sentence Representations from Natural Language Inference Data
|
1705.02364
|
http://arxiv.org/abs/1705.02364v5
|
http://arxiv.org/pdf/1705.02364v5.pdf
|
https://github.com/facebookresearch/InferSent
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-high-coverage-method-for-automatic-false
|
A High Coverage Method for Automatic False Friends Detection for Spanish and Portuguese
| null |
https://aclanthology.org/W18-3903
|
https://aclanthology.org/W18-3903.pdf
|
https://github.com/pln-fing-udelar/false-friends
| true | true | false |
none
|
https://paperswithcode.com/paper/the-chefs-hat-simulation-environment-for
|
The Chef's Hat Simulation Environment for Reinforcement-Learning-Based Agents
|
2003.05861
|
https://arxiv.org/abs/2003.05861v1
|
https://arxiv.org/pdf/2003.05861v1.pdf
|
https://github.com/pablovin/MoodyFramework
| false | false | true |
none
|
https://paperswithcode.com/paper/deep-video-deblurring
|
Deep Video Deblurring
|
1611.08387
|
http://arxiv.org/abs/1611.08387v1
|
http://arxiv.org/pdf/1611.08387v1.pdf
|
https://github.com/susomena/DeepSlowMotion
| false | false | true |
tf
|
https://paperswithcode.com/paper/adaptive-system-optimization-using-random
|
Adaptive system optimization using random directions stochastic approximation
|
1502.05577
|
http://arxiv.org/abs/1502.05577v2
|
http://arxiv.org/pdf/1502.05577v2.pdf
|
https://github.com/prashla/RDSA
| true | true | false |
none
|
https://paperswithcode.com/paper/identification-of-emergency-blood-donation
|
Identification of Emergency Blood Donation Request on Twitter
| null |
https://aclanthology.org/W18-5907
|
https://aclanthology.org/W18-5907.pdf
|
https://github.com/pmathur5k10/EBDR
| true | true | false |
none
|
https://paperswithcode.com/paper/rethinking-on-multi-stage-networks-for-human
|
Rethinking on Multi-Stage Networks for Human Pose Estimation
|
1901.00148
|
https://arxiv.org/abs/1901.00148v4
|
https://arxiv.org/pdf/1901.00148v4.pdf
|
https://github.com/chenyilun95/tf-cpn
| false | false | true |
tf
|
https://paperswithcode.com/paper/semantic-visual-navigation-by-watching
|
Semantic Visual Navigation by Watching YouTube Videos
|
2006.10034
|
https://arxiv.org/abs/2006.10034v2
|
https://arxiv.org/pdf/2006.10034v2.pdf
|
https://github.com/MatthewChang/video-dqn
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/sound-event-detection-and-time-frequency
|
Sound Event Detection and Time-Frequency Segmentation from Weakly Labelled Data
|
1804.04715
|
http://arxiv.org/abs/1804.04715v2
|
http://arxiv.org/pdf/1804.04715v2.pdf
|
https://github.com/qiuqiangkong/sed_time_freq_segmentation
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/dueling-network-architectures-for-deep
|
Dueling Network Architectures for Deep Reinforcement Learning
|
1511.06581
|
http://arxiv.org/abs/1511.06581v3
|
http://arxiv.org/pdf/1511.06581v3.pdf
|
https://github.com/prajwalgatti/DRL-Continuous-Control
| false | false | true |
none
|
https://paperswithcode.com/paper/very-deep-convolutional-networks-for-large
|
Very Deep Convolutional Networks for Large-Scale Image Recognition
|
1409.1556
|
http://arxiv.org/abs/1409.1556v6
|
http://arxiv.org/pdf/1409.1556v6.pdf
|
https://github.com/Tools4Project/4501Project
| false | false | true |
tf
|
https://paperswithcode.com/paper/efficient-training-of-energy-based-models-via
|
Efficient training of energy-based models via spin-glass control
|
1910.01592
|
https://arxiv.org/abs/1910.01592v4
|
https://arxiv.org/pdf/1910.01592v4.pdf
|
https://github.com/apozas/rapid
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/context-dependent-fine-grained-entity-type
|
Context-Dependent Fine-Grained Entity Type Tagging
|
1412.1820
|
http://arxiv.org/abs/1412.1820v2
|
http://arxiv.org/pdf/1412.1820v2.pdf
|
https://github.com/shanzhenren/AFET
| false | false | true |
none
|
https://paperswithcode.com/paper/sampling-generative-networks
|
Sampling Generative Networks
|
1609.04468
|
http://arxiv.org/abs/1609.04468v3
|
http://arxiv.org/pdf/1609.04468v3.pdf
|
https://github.com/ptrblck/prog_gans_pytorch_inference
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/breaking-the-curse-of-space-explosion-towards
|
Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search
|
2007.07197
|
https://arxiv.org/abs/2007.07197v2
|
https://arxiv.org/pdf/2007.07197v2.pdf
|
https://github.com/guoyongcs/CNAS
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/learning-imbalanced-datasets-with-label
|
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss
|
1906.07413
|
https://arxiv.org/abs/1906.07413v2
|
https://arxiv.org/pdf/1906.07413v2.pdf
|
https://github.com/feidfoe/AdjustBnd4Imbalance
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/learning-2d-temporal-adjacent-networks-for
|
Learning 2D Temporal Adjacent Networks for Moment Localization with Natural Language
|
1912.03590
|
https://arxiv.org/abs/1912.03590v3
|
https://arxiv.org/pdf/1912.03590v3.pdf
|
https://github.com/researchmm/2D-TAN
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/multigrid-predictive-filter-flow-for
|
Multigrid Predictive Filter Flow for Unsupervised Learning on Videos
|
1904.01693
|
http://arxiv.org/abs/1904.01693v1
|
http://arxiv.org/pdf/1904.01693v1.pdf
|
https://github.com/bestaar/predictiveFilterFlow
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/image-reconstruction-with-predictive-filter
|
Image Reconstruction with Predictive Filter Flow
|
1811.11482
|
http://arxiv.org/abs/1811.11482v1
|
http://arxiv.org/pdf/1811.11482v1.pdf
|
https://github.com/bestaar/predictiveFilterFlow
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/revisiting-unreasonable-effectiveness-of-data
|
Revisiting Unreasonable Effectiveness of Data in Deep Learning Era
|
1707.02968
|
http://arxiv.org/abs/1707.02968v2
|
http://arxiv.org/pdf/1707.02968v2.pdf
|
https://github.com/Tencent/tencent-ml-images
| false | false | true |
tf
|
https://paperswithcode.com/paper/general-purpose-atomic-crosschain
|
General Purpose Atomic Crosschain Transactions
|
2011.12783
|
https://arxiv.org/abs/2011.12783v4
|
https://arxiv.org/pdf/2011.12783v4.pdf
|
https://github.com/ConsenSys/gpact
| true | true | true |
none
|
https://paperswithcode.com/paper/ms-dpps-multi-source-determinantal-point
|
MS-DPPs: Multi-Source Determinantal Point Processes for Contextual Diversity Refinement of Composite Attributes in Text to Image Retrieval
|
2507.06654
|
https://arxiv.org/abs/2507.06654v1
|
https://arxiv.org/pdf/2507.06654v1.pdf
|
https://github.com/nec-n-sogi/msdpp
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/atlas-end-to-end-3d-scene-reconstruction-from
|
Atlas: End-to-End 3D Scene Reconstruction from Posed Images
|
2003.10432
|
https://arxiv.org/abs/2003.10432v3
|
https://arxiv.org/pdf/2003.10432v3.pdf
|
https://github.com/magicleap/Atlas
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/nimbro-op2x-adult-sized-open-source-3d
|
NimbRo-OP2X: Adult-sized Open-source 3D Printed Humanoid Robot
|
1810.08395
|
http://arxiv.org/abs/1810.08395v1
|
http://arxiv.org/pdf/1810.08395v1.pdf
|
https://github.com/iswariyam/Mini-semantic-segmentation-network-pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/invariance-analysis-of-saliency-models-versus
|
Invariance Analysis of Saliency Models versus Human Gaze During Scene Free Viewing
|
1810.04456
|
http://arxiv.org/abs/1810.04456v1
|
http://arxiv.org/pdf/1810.04456v1.pdf
|
https://github.com/CZHQuality/Sal-CFS-GAN
| false | false | true |
tf
|
https://paperswithcode.com/paper/unpaired-image-to-image-translation-using
|
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
|
1703.10593
|
https://arxiv.org/abs/1703.10593v7
|
https://arxiv.org/pdf/1703.10593v7.pdf
|
https://github.com/Shumway82/CycleGAN
| false | false | true |
tf
|
https://paperswithcode.com/paper/semi-supervised-learning-with-ladder-networks
|
Semi-Supervised Learning with Ladder Networks
|
1507.02672
|
http://arxiv.org/abs/1507.02672v2
|
http://arxiv.org/pdf/1507.02672v2.pdf
|
https://github.com/CuriousAI/ladder
| false | false | true |
none
|
https://paperswithcode.com/paper/bayesian-optimization-of-hyper-parameters-in
|
Bayesian optimization of hyper-parameters in reservoir computing
|
1611.05193
|
http://arxiv.org/abs/1611.05193v3
|
http://arxiv.org/pdf/1611.05193v3.pdf
|
https://github.com/rednotion/parallel_esn_web
| false | false | true |
none
|
https://paperswithcode.com/paper/convolutional-neural-network-architecture-for
|
Convolutional neural network architecture for geometric matching
|
1703.05593
|
http://arxiv.org/abs/1703.05593v2
|
http://arxiv.org/pdf/1703.05593v2.pdf
|
https://github.com/ignacio-rocco/cnngeometric_pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/neural-audio-synthesis-of-musical-notes-with
|
Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders
|
1704.01279
|
http://arxiv.org/abs/1704.01279v1
|
http://arxiv.org/pdf/1704.01279v1.pdf
|
https://github.com/NoaCahan/WavenetAutoEncoder
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/tips-and-tricks-for-visual-question-answering
|
Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challenge
|
1708.02711
|
http://arxiv.org/abs/1708.02711v1
|
http://arxiv.org/pdf/1708.02711v1.pdf
|
https://github.com/feifengwhu/question_attention
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/retinal-vessel-segmentation-based-on-fully
|
Retinal vessel segmentation based on Fully Convolutional Neural Networks
|
1812.07110
|
http://arxiv.org/abs/1812.07110v2
|
http://arxiv.org/pdf/1812.07110v2.pdf
|
https://github.com/americofmoliveira/VesselSegmentation_ESWA
| false | false | true |
none
|
https://paperswithcode.com/paper/randomized-matrix-decompositions-using-r
|
Randomized Matrix Decompositions using R
|
1608.02148
|
http://arxiv.org/abs/1608.02148v4
|
http://arxiv.org/pdf/1608.02148v4.pdf
|
https://github.com/Benli11/ristretto
| false | false | true |
none
|
https://paperswithcode.com/paper/modified-shallow-water-equations-for
|
Modified Shallow Water Equations for significantly varying seabeds
|
1202.6542
|
http://arxiv.org/abs/1202.6542v6
|
http://arxiv.org/pdf/1202.6542v6.pdf
|
https://github.com/huwb/crest-oceanrender
| false | false | true |
none
|
https://paperswithcode.com/paper/semantic-document-distance-measures-and
|
Semantic Document Distance Measures and Unsupervised Document Revision Detection
|
1709.01256
|
http://arxiv.org/abs/1709.01256v2
|
http://arxiv.org/pdf/1709.01256v2.pdf
|
https://github.com/XiaofengZhu/wDTW-wTED
| true | true | true |
none
|
https://paperswithcode.com/paper/revisiting-decomposable-submodular-function
|
Revisiting Decomposable Submodular Function Minimization with Incidence Relations
|
1803.03851
|
http://arxiv.org/abs/1803.03851v3
|
http://arxiv.org/pdf/1803.03851v3.pdf
|
https://github.com/lipan00123/DSFM-with-incidence-relations
| true | true | false |
none
|
https://paperswithcode.com/paper/learning-deep-representations-of-fine-grained
|
Learning Deep Representations of Fine-grained Visual Descriptions
|
1605.05395
|
http://arxiv.org/abs/1605.05395v1
|
http://arxiv.org/pdf/1605.05395v1.pdf
|
https://github.com/Maymaher/StackGANv2
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/an-end-to-end-trainable-neural-network-for
|
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition
|
1507.05717
|
http://arxiv.org/abs/1507.05717v1
|
http://arxiv.org/pdf/1507.05717v1.pdf
|
https://github.com/bai-shang/crnn_ctc_ocr.Tensorflow
| false | false | true |
tf
|
https://paperswithcode.com/paper/learning-to-learn-without-forgetting-by
|
Learning to Learn without Forgetting by Maximizing Transfer and Minimizing Interference
|
1810.11910
|
https://arxiv.org/abs/1810.11910v3
|
https://arxiv.org/pdf/1810.11910v3.pdf
|
https://github.com/mattriemer/mer
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/pythia-v01-the-winning-entry-to-the-vqa
|
Pythia v0.1: the Winning Entry to the VQA Challenge 2018
|
1807.09956
|
http://arxiv.org/abs/1807.09956v2
|
http://arxiv.org/pdf/1807.09956v2.pdf
|
https://github.com/songhe17/pythia-clone
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/generative-adversarial-text-to-image
|
Generative Adversarial Text to Image Synthesis
|
1605.05396
|
http://arxiv.org/abs/1605.05396v2
|
http://arxiv.org/pdf/1605.05396v2.pdf
|
https://github.com/Maymaher/StackGANv2
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/attngan-fine-grained-text-to-image-generation
|
AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks
|
1711.10485
|
http://arxiv.org/abs/1711.10485v1
|
http://arxiv.org/pdf/1711.10485v1.pdf
|
https://github.com/Maymaher/StackGANv2
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/benchmarking-machine-learning-models-on-eicu
|
Benchmarking machine learning models on multi-centre eICU critical care dataset
|
1910.00964
|
https://arxiv.org/abs/1910.00964v3
|
https://arxiv.org/pdf/1910.00964v3.pdf
|
https://github.com/mostafaalishahi/eICU_Benchmark
| true | true | true |
none
|
Subsets and Splits
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.