Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
json
Sub-tasks:
extractive-qa
Languages:
Catalan
Size:
< 1K
ArXiv:
License:
File size: 6,952 Bytes
bc479f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
---
languages:
- ca
---
# ViquiQuAD, An extractive QA dataset for catalan, from the Wikipedia
## BibTeX citation
If you use any of these resources (datasets or models) in your work, please cite our latest paper:
```bibtex
@inproceedings{armengol-estape-etal-2021-multilingual,
title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
author = "Armengol-Estap{\'e}, Jordi and
Carrino, Casimiro Pio and
Rodriguez-Penagos, Carlos and
de Gibert Bonet, Ona and
Armentano-Oller, Carme and
Gonzalez-Agirre, Aitor and
Melero, Maite and
Villegas, Marta",
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-acl.437",
doi = "10.18653/v1/2021.findings-acl.437",
pages = "4933--4946",
}
```
# Digital Object Identifier (DOI) and access to dataset files
https://doi.org/10.5281/zenodo.4562345
## Introduction
This dataset contains 3111 contexts extracted from a set of 597 high quality original (no translations) articles in the Catalan Wikipedia "Viquipèdia" (ca.wikipedia.org), and 1 to 5 questions with their answer for each fragment.
Viquipedia articles are used under [CC-by-sa] (https://creativecommons.org/licenses/by-sa/3.0/legalcode) licence.
This dataset can be used to fine-tune and evaluate extractive-QA and Language Models. It is part of the Catalan Language Understanding Benchmark (CLUB) as presented in:
Armengol-Estapé J., Carrino CP., Rodriguez-Penagos C., de Gibert Bonet O., Armentano-Oller C., Gonzalez-Agirre A., Melero M. and Villegas M.,Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? A Comprehensive Assessment for Catalan". Findings of ACL 2021 (ACL-IJCNLP 2021).
### Supported Tasks and Leaderboards
Extractive-QA, Language Model
### Languages
CA- Catalan
### Directory structure
* README
* dev.json
* test.json
* train.json
* viquiquad.py
## Dataset Structure
### Data Instances
json files
### Data Fields
Follows ((Rajpurkar, Pranav et al., 2016) for squad v1 datasets. (see below for full reference)
### Example:
<pre>
{
"data": [
{
"title": "Frederick W. Mote",
"paragraphs": [
{
"context": "L'historiador Frederick W. Mote va escriure que l'ús del terme \\\\\\\\\\\\\\\\"classes socials\\\\\\\\\\\\\\\\" per a aquest sistema era enganyós i que la posició de les persones dins del sistema de quatre classes no era una indicació del seu poder social i riquesa reals, sinó que només implicava \\\\\\\\\\\\\\\\"graus de privilegi\\\\\\\\\\\\\\\\" als quals tenien dret institucionalment i legalment, de manera que la posició d'una persona dins de les classes no era una garantia de la seva posició, ja que hi havia xinesos rics i amb bona reputació social, però alhora hi havia menys mongols i semu rics que mongols i semu que vivien en la pobresa i eren maltractats.",
"qas": [
{
"answers": [
{
"text": "Frederick W. Mote",
"answer_start": 14
}
],
"id": "5728848cff5b5019007da298",
"question": "Qui creia que el sistema de classes socials de Yuan no s’hauria d’anomenar classes socials?"
},
...
]
}
]
},
...
]
}
</pre>
### Data Splits
train.development,test
## Content analysis
### Number of articles, paragraphs and questions
* Number of articles: 597
* Number of contexts: 3111
* Number of questions: 15153
* Questions/context: 4.87
* Number of sentences in contexts: 15100
* Sentences/context: 4.85
### Number of tokens
* tokens in context: 469335
* tokens/context 150.86
* tokens in questions: 145249
* tokens/questions: 9.58
* tokens in answers: 63246
* tokens/answers: 4.17
### Lexical variation
After filtering (tokenization, stopwords, punctuation, case), 83,88% of the words in the question can be found in the Context
### Question type
| Question | Count | % |
|--------|-----|------|
| què | 4220 | 27.85 % |
| qui | 2239 | 14.78 % |
| com | 1964 | 12.96 % |
| quan | 1133 | 7.48 % |
| on | 1580 | 10.43 % |
| quant | 925 | 6.1 % |
| quin | 3399 | 22.43 % |
| no question mark | 21 | 0.14 % |
### Question-answer relationships
From 100 randomly selected samples:
* Lexical variation: 33.0%
* World knowledge: 16.0%
* Syntactic variation: 35.0%
* Multiple sentence: 17.0%
## Dataset Creation
### Methodology
From a set of high quality, non-translation, articles in the Catalan Wikipedia (ca.wikipedia.org), 597 were randomly chosen, and from them 3111, 5-8 sentence contexts were extracted. We commissioned creation of between 1 and 5 questions for each context, following an adaptation of the guidelines from SQUAD 1.0 [Rajpurkar, Pranav et al. “SQuAD: 100, 000+ Questions for Machine Comprehension of Text.” EMNLP (2016)], (http://arxiv.org/abs/1606.05250). In total, 15153 pairs of a question and an extracted fragment that contains the answer were created.
### Curation Rationale
For compatibility with similar datasets in other languages, we followed as close as possible existing curation guidelines.
### Source Data
- https://ca.wikipedia.org
#### Initial Data Collection and Normalization
The source data are scraped articles from the Catalan wikipedia site (https://ca.wikipedia.org).
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
We commissioned the creation of 1 to 5 questions for each context, following an adaptation of the guidelines from SQUAD 1.0 (Rajpurkar, Pranav et al. “SQuAD: 100, 000+ Questions for Machine Comprehension of Text.” EMNLP (2016)), http://arxiv.org/abs/1606.05250.
#### Who are the annotators?
Native language speakers.
### Dataset Curators
Carlos Rodríguez and Carme Armentano, from BSC-CNS
### Personal and Sensitive Information
No personal or sensitive information included.
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Contact
Carlos Rodríguez-Penagos (carlos.rodriguez1@bsc.es) and Carme Armentano-Oller (carme.armentano@bsc.es)
## License
<a rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/"><img alt="Attribution-ShareAlike 4.0 International License" style="border-width:0" src="https://i.creativecommons.org/l/by/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/">Attribution-ShareAlike 4.0 International License</a>.
|